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Abstract

Human mobility is crucial for urban planning (e.g., pub-
lic transportation) and epidemic response strategies. How-
ever, existing research often neglects integrating comprehen-
sive perspectives on spatial dynamics, temporal trends, and
other contextual views due to the limitations of existing mo-
bility datasets. To bridge this gap, we introduce MOBINS
(MOBIlity Networked time Series), a novel dataset collection
designed for networked time-series forecasting of dynamic hu-
man movements. MOBINS features diverse and explainable
datasets that capture various mobility patterns across different
transportation modes in four cities and two countries and cover
both transportation and epidemic domains at the administra-
tive area level. Our experiments with nine baseline methods
reveal the significant impact of different model backbones on
the proposed six datasets. We provide a valuable resource for
advancing urban mobility research.

1 Introduction
Diverse and explainable human mobility datasets are crucial
for advancing urban planning, affecting public transporta-
tion demand (Han et al. 2022), crowd congestion (Singh
et al. 2020), traffic management (Liu et al. 2024), and infec-
tion prediction (Panagopoulos, Nikolentzos, and Vazirgian-
nis 2021). Previous research focused on forecasting traffic
and crowd congestion in specific areas using various trans-
portation modes, such as subway systems (TianChi 2019),
ride-hailing services (Fivethirtyeight 2015), and taxis (TLC
2009). Additionally, there have been several attempts to pre-
dict COVID-19 infection by analyzing human mobility across
different regions (Katragadda et al. 2022).

However, the datasets used in prior studies often fail to
capture the diverse nature of human mobility from multiple
perspectives. To comprehensively represent diverse mobility
patterns, it is imperative to observe the movements of many
individuals over an extended period, taking into account var-
ious transportation modes. Unfortunately, many studies es-
timate demand using data either in a single transportation
mode or a short time frame (TianChi 2019; Panagopoulos,
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Figure 1: A structure of mobility networked time series in
New York. MOBINS contains three components: (1) human
movements from an origin to a destination over time, (2)
spatial structure based on geographic proximity or a road
network, and (3) time-varying features (e.g., numbers of taxi
pick-ups and drop-offs) of each region. The first and third
components cover the same period.

Nikolentzos, and Vazirgiannis 2021). Some efforts to under-
stand human mobility rely on sparse movement data collected
from a limited number of individuals. Despite the importance
of understanding human mobility’s impact on various as-
pects, such as transportation and epidemics, there is a lack of
research that integrates additional information beyond trans-
portation to enhance the diversity of mobility datasets.

Subway datasets (TianChi 2019), a networked mobility
dataset consisting of stations with high human traffic volumes,
meet many of the specified criteria. Nevertheless, the subway
datasets themselves do not offer multiple perspectives—i.e.,
diversity. Although there have been several studies to broaden
a single data perspective (Shi et al. 2020), they only integrate
mobility data from a single source with other contextual infor-
mation that shares the same static topology. It is insufficient,
for example, to simply add weather information as an addi-
tional variable to the time series. Instead, it is critical to use
mobility-effected information at specific points of interest
(PoIs) to create synergy between dynamic movements and
networked time series. This approach not only enhances per-
formance but also aids in understanding social phenomena
that are difficult to discern from a single data source.

To improve the diversity of human mobility datasets, it is
essential to collect data from different transportation modes
across diverse regions over an extended period, capturing
numerous daily movements. Moreover, incorporating addi-
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Figure 2: Dynamic edge movements and time-varying infec-
tion cases on a static spatial network. On top of the spatial
network, node features represent the number of confirmed
cases in each city or district over time, and edge features rep-
resent population movement flows between cities or districts
over time. The increasing number of infection cases at the
upper-right node is influenced by the increasing population
flows to that node from other nodes.

tional contextual information, such as disease outbreaks, can
aid in capturing various contextual patterns associated with
spatio-temporal information. Meanwhile, for explainability
purposes, the instances in the dataset should be organized on
a network based on the spatial connectivity of each explain-
able area unit, such as an administrative area.

Towards diverse and explainable human mobility datasets,
we propose MOBINS, MOBIlity Networked time-Series
forecasting benchmark. MOBINS offers a unique combina-
tion of origin-destination movements, a spatial network, and
multiple time series, as illustrated in Figure 1. It involves mul-
tiple transportation modes including buses, subways, express
buses, and taxis, providing a rich representation of human
mobility patterns. With observations spanning at least two
years and numerous daily movements, MOBINS enables the
development and evaluation of advanced forecasting mod-
els. To ensure broad applicability, we include the benchmark
datasets for transportation and infection prediction across
four cities and two countries. By representing the networked
mobility datasets at the administrative area level and treating
each node as a distinct entity, MOBINS helps the model
interpretation of the underlying mobility patterns.

Our dataset collection contains not only network-based
interactions between nodes and edges but also temporal dy-
namics from time-varying features. Also, all datasets have
a spatial network, where nodes represent locations such as
stations, districts, and cities and edges represent connectivity
between nodes based on subway lines, roads, and geograph-
ical adjacency. In Figure 2 visualizing part of a dataset in
MOBINS, a spatial network created based on road network
information is given as static data, and dynamic human mo-
bility is represented through dynamic edge movements. In
this case, the positive correlation between human movements
and time-varying infection cases is captured. This kind of
insight is difficult to uncover from a straightforward col-
lection of multiple datasets, because their regions, spatial
and temporal resolutions, and collection intervals may not be
aligned. Therefore, this new opportunity clearly demonstrates
the innovation and significance of MOBINS.

Our sophisticated and diverse dataset collection is pub-
licly available together with forecasting methods at https:
//zenodo.org/records/14590709. A substantial amount of time
and effort has been dedicated to gathering comprehensive
datasets from various data sources, as well as merging and
preprocessing them in preparation for their release. We aspire
to contribute to the progress of the community that studies
human mobility. Our contributions are as follows:

• Datasets: To the best of our knowledge, this is the first
comprehensive dataset collection characterized by diver-
sity and explainability for mobility networked time-series
forecasting. Also, we provide code to use our datasets.

• Experiments: We conduct experiments to predict both
time series and origin-destination movements. These ex-
periments are based on various baselines with different
backbones, applied to our dataset collection: transporta-
tion and epidemic datasets in four cities and two countries.

• Takeaways: Our experiments highlight the need for an
integrated framework that simultaneously considers the
three components—origin-destination movements, a spa-
tial network, and multiple time series. These insights guide
future research directions in developing advanced frame-
works for mobility networked time-series forecasting.

2 Preliminaries
2.1 Forecasting with Mobility Time-Series Data
Human mobility prediction aims to predict each location’s
various attributes such as speed, demand, and congestion. In
the context of traffic forecasting, studies employ traffic speed
sensor datasets (Liu et al. 2024; Li et al. 2017) collected
from PeMS (Performance Measurement System). Similarly,
studies on demand or congestion prediction use modified in-
/outflow datasets derived from various transportation modes,
such as subway (TianChi 2019) or taxi (TLC 2009) datasets.
Unlike conventional time-series forecasting, mobility time-
series forecasting emphasizes both temporal and spatial mod-
ules. Spatial axes are represented using N×N grids based on
given coordinates, while an adjacency graph captures spatial
connectivity derived from PoIs or a correlation generated
from the sensor proximity (Jiang et al. 2021). Alternatively,
station-based spatial connectivity is employed to model the
patterns of movements within a given graph (Ou et al. 2020).

2.2 Forecasting with Origin-Destination Data
Origin-destination (OD) forecasting focuses on predicting
the number of movements between the regions, capturing the
interaction patterns within a mobility network. Datasets from
ride-hailing services (Fivethirtyeight 2015), taxi (TLC 2009),
and subway (TianChi 2019) provide valuable information for
deriving origins and destinations. OD movements between
candidate origins and destinations, such as grids, stations,
and PoIs, are forecasted using spatial and temporal mod-
ules (Han et al. 2022; Wang et al. 2019; Rong, Ding, and Li
2023). Meanwhile, several studies have attempted to enhance
time-series forecasting performance by incorporating OD
movements. For example, research on COVID-19 prediction
in England (Panagopoulos, Nikolentzos, and Vazirgiannis
2021) and USA (Wang et al. 2023) has used the interaction
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between nodes, represented by the number of COVID-19
cases, and human mobility between regions. These studies
leverage the relationship between inter-regional movement
and the spread of infections to predict the number of cases in
each region (Katragadda et al. 2022).

3 Mobility Networked Time Series
3.1 Problem Definitions
Mobility is represented along both spatial and temporal
dimensions. The spatial component is structured through
a graph, denoted as G = (V,E). The node set V =
{v1, v2, . . . , vN} captures locational data, while the edge
set E illustrates the connectivity between these nodes. Each
node temporally aggregates node time-series features Xt,
encompassing metrics such as transportation in/out-flow, rid-
ership, infection rates, and additional time-sensitive data,
where Xt ∈ RN×d, d is the number of feature variables, and
t is the index of the time. In scenarios where the graph G
remains static, its spatial network A ∈ RN×N is defined
through a fixed adjacency matrix. Conversely, in dynamic set-
tings, G evolves with OD movements Mt ∈ RN×N , where
M ij

t accurately measures the volume of movements from
node vi to node vj at each time point t.
Definition 3.1 (MOBILITY NETWORKED TIME-SERIES
FORECASTING). Given a spatial network A and a corre-
sponding historical dataset D = {D1, D2, . . . DT }, where
Dt = (Xt,Mt) includes node time-series features Xt

and OD movements Mt, the objective of mobility net-
worked time-series forecasting is to learn a function f
that forecasts both the future node times-series features
{XT+1, XT+2, . . . , XT+H} and the future OD movements
{MT+1,MT+2, . . . ,MT+H} over a forecast horizon H .

3.2 Limitations of Existing Mobility Datasets
Existing mobility datasets, as used in human mobility
forecasting, are compared with the characteristics of our
MOBINS in Table 1. We categorize existing human mobil-
ity datasets into three types. In the first type, the Hangzhou
Subway dataset (TianChi 2019) offers deep analysis through
individual unit data but is limited by its specific region and
short collection period, sharing the limitation also observed
in datasets like the NYC Uber dataset (Fivethirtyeight 2015).
This dataset’s collection from a single source makes it chal-
lenging to capture the diverse nature of human mobility. In
the second type, LargeST (Liu et al. 2024) provides extensive
data over a long collection period but lacks detailed human
mobility information, such as OD movements. This limita-
tion is also present in other PeMS-based datasets. In the third
type, (Panagopoulos, Nikolentzos, and Vazirgiannis 2021)
shared human mobility datasets that link movements with
other factors. However, its short collection period makes it
challenging to observe long-term trends, and the absence of
a spatial network reduces its utility for spatial analysis.

For urban planning purposes (e.g., public transportation)
and epidemic response strategies, human mobility datasets
should provide multiple views of spatial and temporal di-
mensions, as well as exhibit qualities such as diversity and
explainability. However, many datasets currently available do

not meet these criteria. In Table 2, we highlight the specific
shortcomings of existing human mobility datasets, emphasiz-
ing their deficiencies in capturing essential qualities.

Diversity To accurately represent human mobility, datasets
should encompass a wide array of contexts. Human move-
ment can occur through various modes of transportation, such
as subways, buses, high-speed trains, and taxis. A dataset that
covers only a single mode of transportation, like the subway
dataset (TianChi 2019), fails to provide a comprehensive view
of mobility. Datasets incorporating various modes are essen-
tial for depicting the diverse nature of human mobility. From
a spatial perspective, the mobility datasets should encompass
various regions to capture the different spatial and contextual
patterns, such as commercial, residential, and tourist patterns,
emerging from diverse administrative areas. For instance,
COVID datasets (Panagopoulos, Nikolentzos, and Vazirgian-
nis 2021) cover four EU countries, and LargeST (Liu et al.
2024) includes datasets from across California, including
Los Angeles, the Bay Area, and San Diego. From a temporal
perspective, datasets should also include long periods to offer
insights into both short-term and long-term mobility patterns.
However, except for LargeST (Liu et al. 2024), many datasets
cover periods of less than one year, with some training mod-
els over periods even shorter than one month (TianChi 2019;
Li et al. 2017). Moreover, mobility datasets must be collected
with many daily movements. Unfortunately, several datasets
are employed with only an insufficient number of daily move-
ments (Wang et al. 2023), which fail to capture representative
human mobility. Understanding human movements is not
only about comprehending the movements themselves but
also about linking information strongly correlated with these
movements to get insights into social phenomena, which al-
lows for the exploration of many aspects of human mobility.
Therefore, bi-modality is helpful in comprehending human
movements and their strongly correlated phenomena. For
example, the COVID datasets consist of two types of data:
OD movements from human mobility between regions based
on mobile device data, and node time-series features from
the number of infected individuals.

Explainability Decision-makers in urban planning require
models with high explainability, which necessitates datasets
with inherent explainability. Training models using grid or
sensor identifiers (Li et al. 2017; Liu et al. 2024) is insuf-
ficient. Explainable units for locational information, e.g.,
administrative areas, are vital. In the spatial dimension of
mobility, each dataset should realistically represent spatial
connectivity. For instance, the subway dataset (TianChi 2019)
records connectivity at the station level. Administrative areas
can create a spatial network based on actual spatial adjacency
and connectivity, indirectly helping to understand how the
impact of an event spreads out.

4 Dataset Documentation
Our MOBINS dataset collection encompasses two domains:
transportation and epidemic. For FAIR data guiding prin-
ciples, MOBINS provides data elements, metadata, and an
identifier at https://zenodo.org/records/14590709.
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Datasets Spatial
Nodes

Spatial Network OD Movements Node Time-Series Features Time PeriodEdges Domain Daily Movements Modes Daily Amounts Domain
Hangzhou Subway

(TianChi 2019) 81 85 Station 2.9M Subway 2.9M Subway
In/Out-flow

01/01/2019
– 01/25/2019

LargeST (CA)
(Liu et al. 2024) 8600 201363 Distance - - 187.77M Traffic Flow 01/01/2017

– 12/31/2021

COVID (England)
(Panagopoulos, Nikolentzos, and Vazirgiannis 2021) 129 - - 11.86M Mobile

Device 1975 Infection 03/01/2020
– 04/30/2020

MOBINS
(Transporation)

Seoul 128 290
Station-based

Administrative
Area

2.68M

Smart
Cards

4.02M

Subway
In/Out-flow

01/01/2022
– 12/31/2023

Busan 60 121 0.63M 0.75M 01/01/2021
– 12/31/2023

Daegu 61 123 0.25M 0.34M 01/01/2021
– 12/31/2023

NYC 5 12 Borough 0.10 M Taxi 3.03M Ridership 02/01/2022
– 03/31/2024

MOBINS
(Epidemic)

Korea 16 45 City &
Province 13.41M Smart

Cards 25834 Infection 01/20/2020
– 08/31/2023

NYC 5 12 Borough 2418 Taxi 2038 Infection 03/01/2020
– 12/31/2023

Table 1: Comparisons based on the components of mobility networked time series (M: million).

Datasets
Diversity Explainability

Various
Modes

Various
Regions

Long
Period

Many Daily
Movements

Bi-Modal
Dataset

Explainable
Units

Spatial
Network

Hangzhou Subway (TianChi 2019) X X X O O O O

LargeST (Liu et al. 2024) O O O - X X O

COVID (Panagopoulos, Nikolentzos, and Vazirgiannis 2021) O O X O O O X

MOBINS O O O O O O O

Table 2: Comparisons based on crucial criteria for mobility datasets.

4.1 Dataset Construction
Transportation datasets The MOBINS dataset collec-
tion comprises transportation data from three South Korea
cities (Seoul, Busan, and Daegu) and one U.S. city (New York
City). The Transportation-[Seoul, Busan, Daegu] datasets
include node time-series features from subway inflow/out-
flow data and OD movements from smart card usage across
various public transportation modes. These datasets use sub-
way maps to represent spatial connectivity, leveraging the
commonalities between node time-series features and OD
movements. However, pre-processing is required to align the
data to a consistent spatial and hourly resolution, as node
time-series features are generated for each station and OD
movements are based on administrative areas. Figure 3 illus-
trates that stations within the same administrative area are
consolidated into a single node in the spatial network, re-
sulting in nodes represented by station-based administrative
areas. The Transportation-NYC dataset includes OD move-
ments from the NYC yellow and green taxi datasets (TLC
2009) and node time-series features from NYC subway, tram,
and railway ridership data. The spatial network is built at
the borough level to alleviate sparsity from the many nodes.
Consequently, NYC taxi records from 263 zones and NYC
ridership data from 428 stations are represented consistently.

Epidemic datasets The MOBINS dataset collection in-
cludes epidemic datasets that consist of node time-series
features obtained from COVID-19 infection count and OD

movements obtained from a smart card or taxi trip records in
South Korea or New York City (NYC). The “Epidemic” sec-
tion in Figure 3 illustrates the composition of the Epidemic-
Korea dataset based on the spatial networks characterized by
an adjacency matrix with diagonal ones representing the con-
nectivity between cities and provinces. The OD movements
from buses, urban rails, railways, and long-distance buses are
used to represent inter-city or inter-provincial movements.
However, islands are excluded due to their distinct transporta-
tion modes. Each node represents a city or a province, with
COVID-19 infection cases recorded at each administrative
area. Similarly, for the Epidemic-NYC dataset, node time-
series features are based on daily infection cases from the
five boroughs, while OD movements are comprehensively in-
tegrated from the yellow and green taxi datasets (TLC 2009).

4.2 Collection Process

All datasets in the MOBINS are collected from reliable
sources. These sources provide publicly accessible data down-
loads based on their administrative systems. The source
data from smart transit card information systems is accessed
through API calls. Data from the Korea Public Data Portal is
available under the CC BY license. For unlicensed sources,
we obtained responses about the uses for research via phone
or email. Additionally, data from the Korea Disease Control
and Prevention Agency (KDCA) was used without numerical
value modifications after obtaining permission.
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Figure 3: MOBINS Composition in South Korea.

The MOBINS comprises three main elements for each
dataset: (1) OD movements, (2) a spatial network, and (3)
time series. The OD movements and time series components
are derived from various sources, which are detailed below.

References of Origin-Destination Movements

• Transportation-[Seoul, Busan, Daegu]: Korea Public
Data Portal 1 and Smart transit card information system 2

• Transportation-NYC: NYC TLC 3

• Epidemic-Korea: Smart transit card information system 2

• Epidemic-NYC: NYC TLC 3

References of Time Series

• Transportation-[Seoul, Busan, Daegu]: Korea Public
Data Portal (Seoul 4 5, Busan 6 and Daegu 7)

• Transportation-NYC: NYC Data Portal 8

• Epidemic-Korea: KDCA 9

• Epidemic-NYC: NYC Health 10

1https://www.data.go.kr/en/data/15081036/fileData.do
2https://stcis.go.kr/wps/main.do
3https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://www.data.go.kr/en/data/15048032/fileData.do
5https://www.data.go.kr/en/data/15060424/fileData.do
6https://www.data.go.kr/en/data/3057229/fileData.do
7https://www.data.go.kr/en/data/15002503/fileData.do
8https://data.ny.gov/Transportation/MTA-Subway-Hourly-

Ridership-Beginning-February-202/wujg-7c2s
9https://ncv.kdca.go.kr/pot/cv/trend/dmstc/selectMntrgSttus.do

10https://github.com/nychealth/coronavirus-
data/blob/master/trends/cases-by-day.csv

References of a Spatial Network We process these reli-
able source datasets to reconstruct datasets with consistent
periods and spatial node units. The datasets cover extensive
periods and maintain overlapping OD movements and time
series within the periods. We generate spatial networks based
on spatial connectivity. All datasets have OD movements
and time series from different sources, which have different
spatial areas. Therefore, we align the spatial areas as follows:

• Transportation-[Seoul, Busan, Daegu]: The spatial net-
works are constructed with ‘station-based administrative
area’, as shown in transportation datasets of Figure 3. We
align the administrative area based on the station-based
network. In other words, we create a ‘station-based admin-
istrative area’ by connecting stations in the same adminis-
trative area with the same node.

• Transportation-NYC and Epidemic-[Korea, NYC]:
The datasets are based on administrative areas such as
city, province, and borough, and the network is organized
based on the spatial connectivity between each area, as
shown in Figure 1 and epidemic datasets of Figure 3.

To protect privacy, the source datasets and our processed
data do not contain any personally identifiable information.
The data were collected at aggregate levels, such as boroughs.
Although MOBINS provides coarser spatial granularity com-
pared to the source datasets, which capture fine-grained move-
ments, our datasets effectively reduce the risk of individual
identification. Also, with an average of over 4,000 daily move-
ments per node, the datasets provide insights into overall
human mobility patterns rather than individual movements.

4.3 Preprocessing/Cleaning/Labeling
Each dataset in the MOBINS collection is derived from dif-
ferent sources for OD movements and time series. To ensure
consistent spatial and temporal resolution, we align these
two sources. In the Transportation-[Seoul, Busan, Daegu]
datasets, we use ’station-based administrative areas’ as spatial
node units, treating stations within the same administrative
area as a single node. For the Transportation-NYC dataset, we
use boroughs as spatial node units to align the spatial resolu-
tion between taxi zones and stations. In the Epidemic-Korea
dataset, the source infection case data is collected at the city
and province levels. Hence, we use OD movements based on
the city and province levels to match spatial resolution. For
the Epidemic-NYC dataset, we use the borough level to main-
tain consistent spatial node units. After the spatial resolutions
are determined, we generate the spatial network based on
these resolutions. Regarding the temporal aspect, although
the source frequency of OD movements from Transportation-
[Busan, Daegu, NYC] is less than 15 minutes, we set the
frequency to 1 hour in the MOBINS to match the time-series
data frequency. This integration of double sources with pos-
itive or negative correlations enables the interpretation and
forecasting of data from various contextual perspectives.

Among our dataset collection, the source OD movements
of the Transportation-Seoul dataset have 14 missing days
in the Korea Public Data Portal. These missing days are
filled with additional OD movement information from the
smart transit card information system. Meanwhile, source OD
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movements from the NYC taxi dataset (TLC 2009) contain
abnormal taxi records. To provide clean NYC OD move-
ments, we remove abnormal taxi records if the difference
between drop-off and pick-up timestamps is less than 0 sec-
onds or more than 6 hours for each record. To facilitate future
data updates, we maintain backups of the raw source data.

4.4 Uses
The MOBINS repository is publicly available for mobility
networked time-series forecasting tasks, providing compre-
hensive views of spatial dynamics, temporal trends, and other
contextual aspects. Since we have addressed the challenges
of aligning spatial and temporal resolution, researchers who
want to use mobility networked time-series datasets can easily
develop their fusion methodologies. From a positive societal
impacts perspective, the MOBINS can be used for urban
planning and epidemic response strategies, helping admin-
istrators understand human mobility and social phenomena
to formulate better policies. Researchers can leverage the
dataset collection to apply their models in various ways by
comprehensively viewing spatial dynamics, temporal trends,
and other contexts. However, in terms of a negative societal
impacts perspective, Epidemic-[Korea, NYC] datasets can
cause problems if misinterpreted, potentially leading to re-
gional biases. Researchers should be cautious not to confuse
correlation with causation and recognize other factors like
population density. Additionally, researchers should avoid
over-interpreting infection data, considering the difference
between ‘confirmed’ and ‘infected’ timestamps.

4.5 Distribution
We created the MOBINS to advance the human mobility
community and distribute the dataset collection without cost.

MOBINS License The MOBINS consists of two cate-
gories. First, the Transportation - [Seoul, Busan, Daegu,
NYC] and Epidemic-NYC datasets are available under a CC
BY-NC 4.0 International License. Second, the Epidemic-
Korea datasets are available under a CC BY-NC-ND 4.0
International License. The code implementations accompa-
nying the datasets are released under the MIT License.

5 Dataset Strawman Analysis
5.1 Transportation-[Seoul, Busan, Daegu, NYC]
Temporal Aspects Figure 4 illustrates both the ‘hours
of the day’ and ‘months of the year’ patterns in the
Transportation-Busan dataset, using the long-term data col-
lection spanning at least two years. The dataset exhibits a
strong positive correlation between OD movements and node
time-series features, as evident from the similar temporal
distributions. Though these two modalities may show dif-
ferent values at a fine granularity, their aggregated trends
coincide with each other, which confirms the validity of the
dataset. Common temporal patterns include commuting pat-
terns at 8 a.m. and 6 p.m., where both OD movements and
inflow/outflow reach their peak values, as shown in Figure 4a.
Also, these temporal patterns in Figures 4a and 4b highlight
the importance of capturing both short-term and long-term
dynamics in mobility networked time-series forecasting.

Spatial Aspects Figure 5a displays the total sum of OD
movements between nodes, and Figure 5b is a matrix based
on hops, indicating the number of nodes to be traversed from
one node to another on the spatial network. Figure 5 reveals
a negative correlation between OD movements and the hop
matrix. In the hop matrix, darker colors represent a lower
number of hops in the spatial network. Conversely, areas
with higher (brighter) OD movements are associated with
lower (darker) hops in the hop matrix. Therefore, a spatial
network and OD movements are correlated, with higher mo-
bility observed between nodes that have lower hops.

5.2 Epidemic-[Korea, NYC]

Temporal Aspects Figure 6 presents the daily infection
cases and daily OD movements for the Epidemic-[Korea,
NYC] datasets. Figures 6a and 6b reveal a negative corre-
lation between infection cases and movements during the
early stages of the COVID-19 pandemic. As infection cases
increase, human movements decrease, indicating a change in
mobility patterns in response to the outbreak. From a tempo-
ral perspective, the Epidemic-[Korea, NYC] datasets demon-
strate a strong negative correlation between node time-series
features (infection cases) and OD movements, providing com-
prehensive insights into the interplay between the spread of
infection and human mobility. This temporal analysis empha-
sizes the importance of considering the dynamic relationship
between human mobility and disease spread.

Spatial Aspects Figure 7 presents a comprehensive visu-
alization of all three components of the mobility networked
time series on the day when the infection cases peaked
for each Epidemic dataset (Korea: 03/17/2022 and NYC:
01/03/2022). The analysis reveals that nodes in close spa-
tial proximity do not necessarily guarantee similar values for
OD movements and infection cases. Furthermore, the areas
with the highest OD movements do not always correspond
to those with the highest infection cases, as observed in both
Korea and NYC. However, in the Epidemic-Korea dataset,
high OD movements typically indicate significant population
exchanges in specific regions, which tend to correlate with
areas having a high number of infection cases. Conversely,
the Epidemic-NYC dataset shows a different pattern, where
Brooklyn has the highest number of infection cases despite
Manhattan having high OD movements.

In summary, the analysis and interpretation of the temporal
and spatial aspects of the transportation and epidemic datasets
highlight the importance of mobility networked time-series
forecasting and the need for fusion methodologies. Mobility
networked time-series forecasting allows for the development
of models that can effectively capture the intricate tempo-
ral and spatial dependencies in human mobility data, adapt
to evolving patterns and relationships, and provide accurate
predictions to support data-driven decision-making. in var-
ious domains. Moreover, fusion methodologies enable the
integration of multiple data sources, providing a more com-
prehensive and holistic understanding of human mobility
patterns and their complex relationships.
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Figure 4: Temporal patterns with positive correlations between inflow/outflow and OD movements about different periods in the
Transportation-Busan dataset. Inflow/outflow and OD movements on all nodes are aggregated hourly or monthly.
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Figure 5: Spatial patterns of the OD movements and hop
matrix in the Transportation-Busan dataset.
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(b) [NYC] Period: 03/01/2020 – 03/31/2022.

Figure 6: Temporal patterns show negative relationships be-
tween infection cases and OD movements in the Epidemic-
[Korea, NYC] datasets. The negative correlation is prominent
in the yellow background. Infection cases and OD move-
ments about all nodes are summed daily (M: million).

6 Experiments
6.1 Experimental Settings
Table 3 summarizes the statistics of the datasets used in our
experiments. To evaluate our dataset collection with a four-
day look-back window and various prediction lengths, we
use Mean Absolute Error (MAE) as an evaluation metric, as
shown in Table 4. We assess model performance across three

different prediction lengths: 7, 14, and 30 days, to capture
both short-term and long-term forecasting capabilities. Previ-
ous studies have employed prediction lengths ranging from
96 to 720 steps for long-term forecasting and 6 to 48 steps for
short-term forecasting (Wu et al. 2022). For Transportation-
[Seoul, Busan, Daegu, NYC] datasets that have a 1-hour time
interval, we evaluate long-term forecasts at horizons of 168,
336, and 720 hours (i.e., 7, 14, and 30 days). Since the 1-
hour interval results in many time points, these horizons are
considered long-term. Meanwhile, for the Epidemic-[Korea,
NYC] datasets, which have a 1-day time interval, the same
prediction periods of 7, 14, and 30 days represent short-term
forecasts. Therefore, our dataset collection serves as a com-
prehensive benchmark for both long-term and short-term
mobility networked time-series forecasting, depending on the
datasets’ time interval, with prediction lengths consistently
set to 7, 14, and 30 days. For fair comparisons, all baselines
are configured to follow the same experimental setup, run-
ning for 10 epochs with early stopping. All experiments are
conducted on Ubuntu with an NVIDIA RTX 3090Ti GPU.

6.2 Baselines
In our evaluation with MOBINS, we choose prediction
models as our benchmark, including (i) Linear-based mod-
els: DLinear, NLinear (Zeng et al. 2023); (ii) RNN-based
model: SegRNN (Lin et al. 2023); (iii) Transformer-based
models: Informer (Zhou et al. 2021), Reformer (Kitaev,
Kaiser, and Levskaya 2020), PatchTST (Nie et al. 2022);
(iv) CNN-based model: TimesNet (Wu et al. 2022); (v) GNN-
based models: STGCN (Yu, Yin, and Zhu 2018), MPNNL-
STM (Panagopoulos, Nikolentzos, and Vazirgiannis 2021).

6.3 Baseline Evaluation Results
In this section, we outline the key results from our experi-
ments, detailing how each baseline performs across a range
of datasets. The outcomes highlight the relative strengths and
weaknesses of different forecasting models and offer insights
into their applicability in diverse contexts.

• Linear models: DLinear was the best model for the
Transportation-Daegu dataset across all prediction lengths
and for the Transportation-[Seoul, Busan] datasets for 14-
day and 30-day predictions. This result suggests that linear
models can be highly effective in scenarios with simpler
data patterns or lower degrees of complexity.
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Figure 7: Spatial visualizations of the OD movements and infections in the Epidemic-[Korea, NYC]. In terms of each node, (a)
and (c) display the sum of both total origin movements that belong to the node as the destination and total destination movements
that belong to the node as the origination. (b) and (d) are the sum of the infection cases in a maximum infection day (M: million).

Domain Dataset # Node Target Dim. Total Period Train Days Test Days Time Interval

Transportation

Seoul 128 16640 01/01/2022 – 12/31/2023 548 182 1 hour

Busan 60 3720 01/01/2021 – 12/31/2023 822 273 1 hour
Daegu 61 3843

NYC 5 30 02/01/2022 – 03/31/2024 593 197 1 hour

Epidemic Korea 16 272 01/30/2020 – 08/31/2023 990 330 1 day

NYC 5 30 03/01/2020 – 12/31/2023 1051 350 1 day

Table 3: Dataset statistics ‘# Node’ is the number of nodes which indicate regions (e.g., stations or PoIs). We newly define
forecasting target attributes with node time-series features and OD movements. For every node, the ‘Target Dim.’ is defined by
N2 + d ·N , where N is the number of regions and d is the number of feature variables from each node.

• RNN-based models: SegRNN showed competitive perfor-
mance but did not achieve the best scores on any dataset,
indicating that RNNs may face challenges with the in-
creased complexity and longer-range dependencies typi-
cally associated with time-series forecasting tasks.

• Transformer-based models: Recent approaches such
as Informer, Reformer, and PatchTST were assessed.
PatchTST excelled in the Transportation-Seoul dataset
for the 7-day prediction length. This result emphasizes
the adaptability and versatility of Transformer-based ap-
proaches, which are known for their ability to handle
long-range dependencies effectively.

• CNN-based models: TimesNet achieved the lowest error
rates in several datasets, including the Transportation-
[Seoul, NYC] and Epidemic-[Korea, NYC] datasets across
all prediction lengths. These findings suggest that CNN-
based models can be highly effective in certain contexts,
particularly when dealing with spatio-temporal patterns.

• GNN-based models: STGCN and MPNNLSTM were
evaluated, but they did not outperform other baseline mod-
els in any of the datasets. However, their performance was
competitive, indicating that GNN-based approaches have
the potential to manage complex network relationships
and scenarios involving spatio-temporal interactions.

6.4 Summary of Findings
Overall, the best model choice depends on the dataset’s spe-
cific characteristics and underlying data patterns.

• While linear models such as DLinear and NLinear perform
well in simpler scenarios, they struggle with more complex
data patterns and non-linear relationships. These models
are limited in their ability to capture intricate temporal

dependencies and are not suitable for datasets with highly
dynamic or irregular patterns. However, in our datasets,
they are simple but powerful baselines.

• RNN-based models, such as SegRNN, face challenges in
handling long-range dependencies and complex temporal
patterns. As the sequence length increases, RNNs suffer
from vanishing or exploding gradients (Pascanu, Mikolov,
and Bengio 2013), limiting their effectiveness in capturing
long-term dependencies. Therefore, SegRNN performs
badly on our transportation datasets.

• While Transformer-based models demonstrate promising
results in handling long-range dependencies, they strug-
gle with capturing local patterns and short-term dynamics.
The self-attention mechanism can be computationally in-
tensive, especially for longer sequences (Wang et al. 2020),
which can limit their scalability.

• GNN-based models are designed to handle complex net-
work relationships but require careful design and fine-
tuning to achieve optimal performance. The performance
of GNN-based models heavily depends on the quality
and representation of the graph structure, which can be
challenging to construct for some datasets.

These findings provide a valuable reference for researchers
when selecting appropriate forecasting models for their appli-
cations. The comprehensive evaluation reinforces the impor-
tance of experimentation and context-driven decision-making
in the field of mobility networked time-series forecasting.
However, the limitations of existing forecasting models high-
light the need for innovative approaches that can address the
challenges posed by complex and diverse datasets. That is,
a novel approach is anticipated to outperform DLinear and
TimesNet for this challenging problem.
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Pred.
day Domain Dataset Linear-based RNN-based Transformer-based CNN-based GNN-based

DLinear NLinear SegRNN Informer Reformer PatchTST TimesNet STGCN MPNNLSTM

7 days

Trans.

Seoul 0.3858
(±0.0068)

0.4021
(±0.0003)

0.7022
(±0.0363)

0.9204
(±0.0018)

0.5637
(±0.0315)

0.3995
(±0.0046)

0.3822
(±0.0062)

0.4053
(±0.0047)

0.6401
(±0.0009)

Busan 0.5743
(±0.0056)

0.5898
(±0.0006)

0.9986
(±0.0087)

3.4773
(±0.0031)

0.7316
(±0.0075)

0.6411
(±0.0052)

0.6103
(±0.0642)

0.6945
(±0.0032)

0.9556
(±0.0035)

Daegu 0.4677
(±0.0004)

0.4919
(±0.0003)

0.7876
(±0.0597)

1.3885
(±0.0038)

0.5338
(±0.0014)

0.4916
(±0.0011)

0.4902
(±0.0087)

0.4901
(±0.0032)

0.7337
(±0.0018)

NYC 0.4491
(±0.0011)

0.4460
(±0.0005)

0.9226
(±0.0462)

0.9147
(±0.007)

0.5503
(±0.0036)

0.4687
(±0.0027)

0.3984
(±0.0024)

0.4601
(±0.0019)

0.6627
(±0.0015)

Epic.
Korea 0.5767

(±0.0031)
0.5828

(±0.0015)
0.5936

(±0.0072)
1.7884

(±0.0013)
0.7137

(±0.0320)
0.6014

(±0.0392)
0.4133

(±0.0058)
0.7427

(±0.0199)
0.7827

(±0.0062)

NYC 0.4830
(±0.0016)

0.4666
(±0.0022)

0.4896
(±0.0179)

1.0627
(±0.0015)

0.5945
(±0.0165)

0.5026
(±0.0044)

0.3948
(±0.0033)

0.5794
(±0.0038)

0.6934
(±0.0062)

14 days

Trans.

Seoul 0.3878
(±0.0047)

0.4072
(±0.0003)

0.7183
(±0.0071)

0.6453
(±0.0043)

0.6310
(±0.0105)

0.4006
(±0.0028)

0.4015
(±0.0312)

0.4182
(±0.0257)

0.6399
(±0.0013)

Busan 0.5830
(±0.0075)

0.5934
(±0.0003)

0.9913
(±0.0243)

0.9482
(±0.0012)

0.7434
(±0.0045)

0.6324
(±0.0023)

0.6175
(±0.0611)

0.6862
(±0.0044)

0.9528
(±0.0040)

Daegu 0.4696
(±0.0004)

0.4942
(±0.0004)

0.8154
(±0.0039)

0.7284
(±0.0004)

0.5486
(±0.0045)

0.4919
(±0.0007)

0.4826
(±0.0033)

0.4888
(±0.0021)

0.7323
(±0.0009)

NYC 0.4579
(±0.0023)

0.4501
(±0.0004)

0.9027
(±0.0237)

0.7229
(±0.004)

0.5623
(±0.0071)

0.4680
(±0.0011)

0.3988
(±0.0017)

0.4629
(±0.0023)

0.6624
(±0.0008)

Epic.
Korea 0.6258

(±0.0006)
0.6088

(±0.0010)
0.6484

(±0.0210)
1.0182

(±0.0116)
0.8025

(±0.0180)
0.6467

(±0.0196)
0.4562

(±0.0063)
0.7726

(±0.0269)
0.8003

(±0.0075)

NYC 0.5008
(±0.0008)

0.4784
(±0.0016)

0.5341
(±0.0298)

0.7046
(±0.0402)

0.6012
(±0.0169)

0.5100
(±0.0048)

0.4026
(±0.0033)

0.5855
(±0.0069)

0.6970
(±0.0095)

30 days

Trans.

Seoul 0.3924
(±0.0020)

0.5949
(±0.0001)

0.7503
(±0.0708)

0.6425
(±0.0006)

0.6446
(±0.0059)

0.4082
(±0.0034)

0.4082
(±0.0095)

0.4215
(±0.0075)

0.6431
(±0.0016)

Busan 0.5985
(±0.0023)

0.6038
(±0.0004)

0.9622
(±0.0453)

0.9365
(±0.0024)

0.7654
(±0.0241)

0.6424
(±0.0028)

0.5969
(±0.0126)

0.6759
(±0.0015)

0.9402
(±0.0001)

Daegu 0.4750
(±0.0004)

0.5006
(±0.0004)

0.8132
(±0.0057)

0.7285
(±0.0021)

0.5849
(±0.0124)

0.4957
(±0.0017)

0.4846
(±0.0023)

0.4923
(±0.0017)

0.7315
(±0.0012)

NYC 0.4747
(±0.0019)

0.4592
(±0.0004)

0.9075
(±0.0185)

0.723
(±0.0013)

0.5709
(±0.0122)

0.4811
(±0.0022)

0.4054
(±0.0040)

0.4627
(±0.0045)

0.6598
(±0.0005)

Epic.
Korea 0.7035

(±0.0028)
0.6479

(±0.0012)
0.7318

(±0.0504)
1.0122

(±0.0077)
1.1443

(±0.0469)
0.7268

(±0.0197)
0.5049

(±0.0118)
0.8537

(±0.0500)
0.8247

(±0.0172)

NYC 0.5304
(±0.0014)

0.4875
(±0.0010)

0.5272
(±0.0286)

0.7243
(±0.0138)

0.6370
(±0.0121)

0.5408
(±0.0068)

0.4068
(±0.0044)

0.6154
(±0.0189)

0.6932
(±0.0104)

Table 4: Prediction comparison between nine baselines in terms of average MAE and standard deviation (in parentheses) with all
prediction lengths (7, 14, and 30 days) in all datasets. The best model across each dataset is highlighted in bold. Please note the
following abbreviations: “Pred.” means “Prediction”, “Trans.” refers to “Transportation” and “Epic.” denotes “Epidemic”.

7 Future Work and Limitations
The complexity of mobility patterns requires diverse and
comprehensive analysis for mobility networked time-series
forecasting. Therefore, every component of mobility datasets
captures spatio-temporal variability across multiple trans-
portation modes and organizes the datasets into a bi-modal
form, facilitating a comprehensive understanding of mobility
trends over time. Additionally, the structure of the datasets
with explainable units under a spatial network increases ex-
plainability, aiding decision-makers in interpreting mobility
trends and implications for urban planning (Li et al. 2012;
Hoang, Zheng, and Singh 2016) and epidemic control (Ni and
Weng 2009; Katragadda et al. 2022) and these insights can
significantly impact policy-making and economic decisions.

While MOBINS dataset collection serves as a forecasting
benchmark, the presence of distribution shifts due to the
changes in the Epidemic-[Korea, NYC] datasets suggests that
they can be utilized for time-series online learning, adapting
models in real-time. Additionally, the benchmark can be
extended for research on imputation, clustering of traveling

behaviors, and hierarchical time-series forecasting. Despite
the advantages of our datasets, there are a few constraints,
such as the fact that MOBINS is limited to only two domains
and its period of dataset collection is mostly only two to three
years, which is not enough to support annual patterns.
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