
37

MoveMine: Mining Moving Object Data for Discovery
of Animal Movement Patterns

ZHENHUI LI, JIAWEI HAN, MING JI, LU-AN TANG, YINTAO YU,
and BOLIN DING, University of Illinois at Urbana-Champaign
JAE-GIL LEE, KAIST
ROLAND KAYS, New York State Museum

With the maturity and wide availability of GPS, wireless, telecommunication, and Web technologies, massive
amounts of object movement data have been collected from various moving object targets, such as animals,
mobile devices, vehicles, and climate radars. Analyzing such data has deep implications in many applications,
such as, ecological study, traffic control, mobile communication management, and climatological forecast.
In this article, we focus our study on animal movement data analysis and examine advanced data mining
methods for discovery of various animal movement patterns. In particular, we introduce a moving object data
mining system, MoveMine, which integrates multiple data mining functions, including sophisticated pattern
mining and trajectory analysis. In this system, two interesting moving object pattern mining functions are
newly developed: (1) periodic behavior mining and (2) swarm pattern mining. For mining periodic behaviors,
a reference location-based method is developed, which first detects the reference locations, discovers the
periods in complex movements, and then finds periodic patterns by hierarchical clustering. For mining
swarm patterns, an efficient method is developed to uncover flexible moving object clusters by relaxing the
popularly-enforced collective movement constraints.

In the MoveMine system, a set of commonly used moving object mining functions are built and a user-
friendly interface is provided to facilitate interactive exploration of moving object data mining and flexible
tuning of the mining constraints and parameters. MoveMine has been tested on multiple kinds of real
datasets, especially for MoveBank applications and other moving object data analysis. The system will benefit
scientists and other users to carry out versatile analysis tasks to analyze object movement regularities
and anomalies. Moreover, it will benefit researchers to realize the importance and limitations of current
techniques and promote future studies on moving object data mining. As expected, a mastery of animal
movement patterns and trends will improve our understanding of the interactions between and the changes
of the animal world and the ecosystem and therefore help ensure the sustainability of our ecosystem.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data mining;
H.4.0 [Information Systems Applications]: General
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1. INTRODUCTION

Thanks to the wide adoption of GPS tracking system and other telemetry and telecom-
munication technologies, massive amounts of moving object data have been collected.
Moving object data could be related to human, objects (e.g., airplanes, vehicles, and
ships), animals, and/or natural forces (e.g., hurricanes and tornadoes). Although most
human and man-made object movements are closely associated with social and eco-
nomic behaviors of people and society, movements of animals and changes of natural
phenomena are often related to ecological and climate studies and thus are related
to the efforts towards a sustainable earth and ecosystem. A systematic development
of computational methods and systems for moving object pattern analysis may have
broad impacts to economic and ecological studies.

Based on the aforesaid motivation, a MoveMine system [Li et al. 2010a] is designed
and developed in our recent research, which takes a spectrum of moving object data as
inputs and aims for the discovery of various kinds of movement patterns and knowl-
edge. Although moving objects can be referred to people and man-made objects, such
as vehicles, airplanes, and ships, and their studies could benefit traffic planning, law
enforcement, counter-terrorism, as well as many other applications, the MoveMine
project is focused more on the study of animal and bird movements and movements of
natural forces (such as hurricanes and tornadoes). This emphasis is due to two major
factors: (1) the wide availability of animal/bird and natural force (e.g., weather) move-
ment data, and their studies have less privacy concerns than studying human and
vehicle movements, and (2) the movements of animals and natural forces provide a
wide spectrum of sophisticated and versatile patterns because their movements often
do not follow particular routes or tracks (thus relatively free movements) and pose
challenges on mining many sophisticated patterns, such as clusters, leaders, followers,
encounters, flocks, convoys, swarms, avoidance, chasing, and periodicity. Such stud-
ies lead to the generation of a set of sophisticated pattern mining methods, with rich
semantics and interesting techniques.

In general, there are many data mining methods developed for analyzing moving
objects data. Based on the nature of the problems, these methods can be categorized
into three categories: (1) classification, where classification models are derived based
on a set of object movement training data, labeled by domain experts, and people may
use classification models to predict new object categories or movements; (2) outlier
detection, where movements that are deviate substantially from regular moving patters
are identified and can be used to single the abnormal events or environmental changes;
and (3) moving object pattern analysis, where various kinds of patterns can be mined
from moving object datasets. Moving object pattern analysis is the focused theme in
this article, which can be further categorized into the following topics:
(1) Repetitive pattern. It is common that objects follow some regular movement pat-

terns. For example, a bird could have daily behaviors between foraging areas and its
nests. The periodic behaviors provide an insightful and concise explanation over a
long moving history. However, it is difficult for humans to manually examine the pe-
riodicity in the movements and give a good assessment of such periodic behavior. If
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Table I. Summary of Major Related Works in Pattern Analysis of Moving Objects

Category Related works
Repetitive pattern Periodic pattern [Mamoulis et al. 2004], periodic behavior [Li

et al. 2010b, 2010c]

Relationship pattern (1) moving clusters: flock [Gudmundsson and van Kreveld
2006], convoy [Jeung et al. 2008b], swarm [Li et al. 2010c];
(2) follower/leadership [Gudmundsson et al. 2008]

Frequent pattern Trajectory-pattern [Giannotti et al. 2007]

one can automatically extract periodic behaviors from raw data (in the form of time
and location), it would give biologists a semantic summarization of animal move-
ments. Also, periodicity helps predict future movements and thus may give people
better chances to protect endangered species. More interestingly, if we observe an
animal starts changing its periodic behavior or route, it could imply a signal of ab-
normal environmental change or an accident. Mamoulis et al. [2004] work out an
efficient algorithm to mine frequent periodic patterns with the period given before-
hand. In our recent work [Li et al. 2010b], we develop algorithm Periodica, which
detects the periods in the movement automatically and statistically summarizes
the periodic behaviors.

(2) Relationship pattern. With a set of moving objects, one might want to know the
relationships among the individuals. One of the most useful tasks is to find groups
of objects that move together. By discovering such clusters, one can detect the
communities of animals. There have been a lot of studies on clusters in terms of
flock [Gudmundsson and van Kreveld 2006] and convoy [Jeung et al. 2008b]. While
flock and convoy enforce the objects in one cluster are together for k consecutive
times, in our recent work [Li et al. 2010c], we introduce a swarm pattern which
relaxes consecutive time constraint. Swarm pattern will be able to find moving
object clusters for many real applications.

Besides clusters, there are also moving object patterns that reflect interactions
among movements, such as followers and leaders. For example, bears and coyotes
are usually observed in the same area because of the food resources. But they always
keep distance from each other. Some species could avoid or follow another by tracing
their odor, sound, or footprints. It is interesting for animal scientists to detect
such relationships automatically and study such relationships. Gudmundsson et al.
[2008] propose several moving object patterns based on the movement directions
and locations, such as flock, leadership, and convergence.

(3) Frequent trajectory pattern. Frequent trajectory patterns are the general moving
trends of all the objects, in terms of both space (i.e., the regions of space visited
during movements) and time (i.e., the duration of movements). For example, a
frequent trajectory pattern could be a considerable number of objects starting from
region A, reaching region B after 10 minutes, and then getting to region C after
20 minutes.

The research work on movement pattern analysis can be summarized in Table I.
Among all the object movement mining methods studied, we believe two issues are

critical for effective animal movement pattern analysis: (1) finding clustered move-
ments, and (2) finding periodic movements. However, for finding clustered movements,
the previous works, such as flock [Gudmundsson and van Kreveld 2006] and convoy [Je-
ung et al. 2008b], assume that the objects in a cluster be close to each other for at least
k consecutive times, which may not be true in most of the real applications. Thus we
propose a new task, called swarm pattern mining [Li et al. 2010a]. This task relaxes the
consecutive time constraint and allows a set of moving objects to be dispersed irregu-
larly as long as they are close to each other for many of the timestamps for an extended
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time period. This matches real applications and likely lead more fruitful finding the
promising patterns.

For finding periodic movements, most previous work assumes periods are given and
fixed. However, in real life, the periods of a moving object could be multiple and un-
known, such as the moving wild animals. Thus, we propose to mining both unknown
periods and periodic behavior [Li et al. 2010b]. We formulate such a periodic behav-
ior mining problem and assume that the observed movement is generated from sev-
eral periodic behaviors associated with some reference locations. A two-stage mining
framework, Periodica, is developed to first detect the periods and then find the periodic
behaviors. Comparing with Mamoulis et al. [2004], Periodica is more useful in real
applications not only because it can detect periods but also because it gives a more
concise summarization of the periodic patterns.

These two critical functions form the key innovations in our newly developed MoveM-
ine system. In this study, we examine these two methods and study their effectiveness
and efficiency at mining such patterns for animal and other object movements. More-
over, we discuss their possible extensions and impact on moving pattern analysis for
animal studies and other similar applications. Further, we introduce the architecture
of the MoveMine system and its various functions for mining moving object data. The
major contributions of this study are outlined as follows.

(1) A system, MoveMine, is constructed that integrates various data mining functions.
The system is tested on real datasets and the results are visualized in Google Map
and Google Earth. MoveMine can facilitate users to analyze moving object data.

(2) A location-based method, Periodica, is developed that effectively mines multiple
periodic behaviors of moving objects.

(3) The concept of swarm pattern is proposed that reveals real moving object clusters,
and an ObjectGrowth method is developed for efficient mining swarm patterns.

(4) Comprehensive experiments are conducted on both real and synthetic datasets,
including a set of animal movement data, deposited in MoveBank (MoveBank.org).
The results demonstrate the usefulness of our system and the effectiveness of our
new algorithms.

(5) We discussed the advantages of periodic behaviors and swarm patterns over other
methods and examined their possible extensions to other problems.

The remainder of the article is organized as follows. Section 2 will give an overview
of general system architecture. Periodic behavior mining and swarm pattern mining
methods are introduced in Section 3 and Section 4 separately. The extensions of the two
methods are discussed in Section 6. We report the experimental results in Section 5.
Finally, we conclude our study in Section 7.

2. GENERAL SYSTEM ARCHITECTURE

Our system provides some interesting data mining functions for biologists to analyze
the animal movement patterns. We focus on mining the repetitive pattern and the
mutual relationship. There have been systems designed for answering spatio-temporal
analysis queries. Stolorz et al. [1995] study the geophysical phenomenon. They basically
extract two spatio-temporal features, cyclone and blocking features. Their analysis
emphasizes on the general trends of climate changes. A system developed by Nanni
et al. [2010] essentially mines the trajectory patterns. Trajectory patterns are the
frequent moving trends over all the moving objects. It is useful for traffic analysis.
However, those systems cannot mine the patterns that biologists are interested in,
such as periodic pattern and swarm pattern. Our MoveMine system will provide these
functions and be tested on the real animal movement data.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 4, Article 37, Publication date: July 2011.



MoveMine: Mining Moving Object Data for Discovery of Animal Movement 37:5

…

Fig. 1. System architecture.

Figure 1 depicts the system architecture of MoveMine that consists of three lay-
ers: (i) collection and cleaning, (ii) mining, and (iii) visualization. The lower layer is
responsible for collection and cleaning of moving object data. Various moving object
datasets are collected from different resources like animals, vehicles, mobile devices,
and climate observations. Due to the limitations of technology, data could be inaccu-
rate, inconsistent, and noisy. So preprocessing is needed to integrate and clean the raw
data and to interpolate missing points. Mining is then performed on the preprocessed
datasets stored in the moving object databases.

A rich set of data mining modules operate on top of the databases, enabling users to
analyze data from different angles. The major functional modules we developed include
periodic pattern mining, swarm pattern mining, trajectory clustering, and classifica-
tion. The details of periodic pattern mining and swarm pattern mining are described
in Section 3 and Section 4 separately.

The top layer shows the visualized results with some statistics. The visualized results
can be plotted on 2D plane or embedded into other visualization tools (e.g., Google Map1

and Google Earth2). Along with the visualized results, some statistics, if possible, are
presented to provide users with more insights into these results.

1http://code.google.com/apis/maps/
2http://code.google.com/apis/earth/
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Fig. 2. Screenshot of the MoveMine system.

Figure 2 shows a screenshot of the MoveMine system. On the top of system, there
are listed a bunch of real moving object datasets, most of them are animal movement
obtained from MoveBank.org. The data can be visualized in Google Map or Google
Earth. This screenshot shows the movement data of bald eagles. Each color represents
the trajectory of each bald eagle. On the left side, people could select individual objects
to analyze. After the dataset and moving objects in this dataset are selected, a user
can choose the function to look into the data. Parameters for the selected function will
be shown correspondingly. The default parameter values are set to the “optimal" ones
derived by our heuristics. To better browse the results, outputs returned are visually
displayed. Similarly, the results will be embedded in Google Map (as shown in Figure 2)
and a user can zoom in/out or drag the map. Furthermore, a user can plot the results
in Google Earth for 3D visualization of the results. There will be a text box on the right
side to explain the results. We will show more system screenshots in Section 5.

3. MINING PERIODIC BEHAVIOR

3.1. Introduction

Periodic behaviors will provide people semantic understanding of the movement. For
example, Figure 3 shows the raw movement data of a student David and the expected
periodic behaviors. However, mining periodic behaviors is a challenging problem. Based
on manual examination of the raw data (on the left), it is almost impossible to extract
the periodic behaviors (on the right). And the periodic behaviors are actually quite
complicated. There are multiple periods and periodic behaviors that may interleave
with each other. Mining periodic behaviors can bridge the gap between raw data and
semantic understanding of the data, which includes following two major issues.

First, the periods (i.e., the regular time intervals in a periodic behavior) are usually
unknown. Even though there are many period detection techniques that are proposed
in the signal processing area, such as Fourier transform and autocorrelation, these
methods cannot be directly applied to the spatio-temporal data because the moving
object will not repeat the movement by appearing at exactly the same point (in terms
of (x, y)) on exactly the same time instance of a period. Besides, there could be multiple
periods existing at the same time, such as David has one period as “day” and another as
“week”. If we consider the movement sequence as a whole, the longer period (i.e., week)
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Raw data of David’s movement

2009−02−05 09:14 (811, 60)
2009−02−05 10:58 (810, 55)
2009−02−05 14:29 (820, 100)

...

...

...

2009−06−12 09:56 (110, 98)
2009−06−12 11:20 (101, 65)
2009−06−12 20:08 (20, 97)
2009−06−12 22:19 (15, 100)

2009−02−05 07:01 (601, 254)

  20:00−8:00 in the dorm
  9:00−18:00 in the office

  14:00−16:00 Tues. and Thurs. in the gym

Periodic Behavior #1

Periodic Behavior #3 
  (Period: week; Time span: Sept. − May)

  (Period: day; Time span: Sept. − May)

  20:00−7:30 in the apartment
  8:00−18:00 in the company
  (Period: day; Time span: June − Aug.)
Periodic Behavior #2 

  13:00−15:00 Mon. and Wed. in the classroom

Hidden periodic behaviors

Fig. 3. Interleaving of multiple periodic behaviors.

will have fewer repeating times than the shorter period (i.e., day). So it is hard to select
a threshold to find all periods. Surprisingly, there is no previous work that can handle
the issue about how to detect multiple periods from the noisy moving object data.
To the best of our knowledge, there is only one work [Bar-David et al. 2009] that
addresses the detection of periods for moving objects. It directly applies the Fourier
transform on moving object data by transforming a location onto a complex plane.
However, as shown in the toy example we will show in Section 3.3, this method does
not work in the presence of spatial noise.

Second, even if the periods are known, the periodic behaviors still need to be mined
from the data because there could be several periodic behaviors with the same period.
As we can see that, in David’s movement, the same period (i.e., day) is associated with
two different periodic behaviors, one from September to May and the other from June to
August. In previous work, Mamoulis et al. [2004] studied the frequent periodic pattern
mining problem for a moving object with a given period. However, the rigid definition
of frequent periodic pattern does not encode the statistical information. It cannot de-
scribe the case such as “David has 0.8 probability to be in the office at 9:00 everyday.”
One may argue that these frequent periodic patterns can be further summarized using
probabilistic modeling approach [Yan et al. 2005; Wang and Parthasarathy 2006]. But
such models built on frequent periodic patterns do not truly reflect the real under-
lying periodic behaviors from the original movement, because frequent patterns are
already a lossy summarization over the original data. Furthermore, if we can directly
mine periodic behaviors on the original movement using polynomial-time complexity,
it is unnecessary to mine frequent periodic patterns and then summarize over these
patterns.

We formulate the periodic behavior mining problem and propose the assumption
that the observed movement is generated from several periodic behaviors associated
with some reference locations. We design a two-stage algorithm, Periodica, to detect
the periods and further find the periodic behaviors.

At the first stage, we focus on detecting all the periods in the movement. Given the
raw data as shown in Figure 3, we use the kernel method to discover those reference
locations, namely reference spots. For each reference spot, the movement data is trans-
formed from a spatial sequence to a binary sequence, which facilitates the detection
of periods by filtering the spatial noise. Besides, based on our assumption, every pe-
riod will be associated with at least one reference spot. All periods in the movement
can be detected if we try to detect the periods in every reference spot. At the second
stage, we statistically model the periodic behavior using a generative model. Based on
this model, underlying periodic behaviors are generalized from the movement using a
hierarchical clustering method and the number of periodic behaviors is automatically
detected by measuring the representation error.
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Table II. A Daily Periodic Behavior of David

8:00 9:00 10:00 · · · 17:00 18:00 19:00
dorm 0.9 0.2 0.1 · · · 0.2 0.7 0.8
office 0.05 0.7 0.85 · · · 0.75 0.2 0.1
unknown 0.05 0.1 0.05 · · · 0.05 0.1 0.1

3.2. Problem Definition

Let D = {(x1, y1, time1), (x2, y2, time2), . . .} be the original movement database for a
moving object. The raw data is linearly interpolated with constant time gap, such as
hour or day. The interpolated sequence is denoted as LOC = loc1loc2 · · · locn, where loci
is a spatial point represented as a pair (loci.x, loci.y).

Given a location sequence LOC, our problem aims at mining all periodic behaviors.
Before defining periodic behavior, we first define some concepts. A reference spot is a
dense area that is frequently visited in the movement. The set of all reference spots is
denoted as O = {o1, o2, . . . , od}, where d is the number of reference spots. A period T
is a regular time interval in the (partial) movement. Let ti (1 ≤ i ≤ T ) denote the i-th
relative timestamp in T .

A periodic behavior can be represented as a pair 〈T , P〉, where P is a probability
distribution matrix. Each entry Pik(1 ≤ i ≤ d, 1 ≤ k ≤ T ) of P is the probability that
the moving object is at the reference spot oi at relative timestamp tk.

For example, for T = 24 (hours), David’s daily periodic behavior (Figure 3 involved
with 2 reference spots (i.e., “office” and “dorm”) could be represented as (2 + 1) × 24
probability distribution matrix, as shown Table II. This table is an intuitive explanation
of formal output of periodic behaviors, which is not calculated according to specific
data in Figure 3. The probability matrix encodes the noises and uncertainties in the
movement. It statistically characterizes periodic behavior such as “David arrives at
office around 9:00.”

Definition 1 (Periodic Behavior Mining). Given a length-n movement sequence
LOC, our goal is to mine all the periodic behaviors {〈T , P〉}.

There are two subtasks in the periodic behavior mining problem, detecting the pe-
riods and mining the periodic behaviors. We propose a two-stage algorithm Periodica,
where the overall procedure of the algorithm is developed in two stages and each stage
targets one subtask.

ALGORITHM 1: Periodica
INPUT: A movement sequence LOC = loc1loc2 · · · locn.
OUTPUT: A set of periodic behaviors.
ALGORITHM:
1: /* Stage 1: Detect periods (Section 3.3)*/
2: Find reference spots O = {o1, o2, · · · , od};
3: for each oi ∈ O do
4: Detect periods in oi and store the periods in Pi;
5: Pset ← Pset ∪ Pi ;
6: end for
7: /* Stage 2: Mine periodic behaviors (Section 3.4) */
8: for each T ∈ Pset do
9: OT = {oi|T ∈ Pi};
10: Construct the symbolized sequence S using OT ;
11: Mine periodic behaviors in S.
12: end for
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Fig. 4. Illustration of the importance to view movement from reference spots.

Algorithm 1 shows the general framework of Periodica. At the first stage, we first
find all the reference spots (line 2) and for each reference spot, the periods are detected
(line 3∼5). Then for every period T , we consider the reference spots with period T and
further mine the corresponding periodic behaviors (line 7∼10).

3.3. Detecting Period

In this section, we will discuss how to detect periods in the movement data. This
includes two subproblems, namely, finding reference spots and detecting periods on
binary sequence generated by these spots. First of all, we want to show why the idea
of reference spots is essential for period detection. Consider the following example.

We generate a movement dataset simulating an animal’s daily activities. Every day,
this animal has 8 hours staying at the den and the rest of the time going to some
random places hunting for food. Figure 4(a) shows its trajectories. We first try the
method introduced in Bar-David et al. [2009]. The method transforms locations (x, y)
onto a complex plane and uses the Fourier transform to detect the periods. However,
as shown in Figure 4(b) and Figure 4(c), there is no strong signal corresponding to
the correct period because such a method is sensitive to spatial noise. If the object
does not follow more or less the same hunting route every day, the period can hardly
be detected. However, in real cases, few objects repeat the exactly same route in the
periodic movement.
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Our key observation is that, if we view the data from the den, the period is easier
to detect. In Figure 4(d), we transform the movement into a binary sequence, where 1
represents the animal is at den and 0 when it goes out. It is easy to see the regularity
in this binary sequence. Our idea is to find some important reference locations, namely
reference spots, to view the movement. In this example, the den serves as our reference
spot.

The notion of reference spots has several merits. First, it filters out the spatial noise
and turns the period detection problem from a 2D space (i.e., spatial) to a 1D space
(i.e., binary). As shown in Figure 4(d), we do not care where the animal goes when it is
out of the den. As long as it follows a regular pattern going out and coming back to the
den, there is a period associated with the den. Second, we can detect multiple periods
in the movement. Consider the scenario that there is a daily period with one reference
spot and a weekly period with another reference spot, it is possible that only period
“day” is discovered because the shorter period will repeat more times. But if we view
the movement from two reference spots separately, both periods can be individually
detected. Third, based on the assumption that each periodic behavior is associated with
some reference locations, all the periods can be found through reference spots.

The rest of this section will discuss in details how to find reference spots and detect
the periods on the binary sequence for each reference spot.

3.3.1. Finding Reference Spots. Since an object with periodic movement will repeatedly
visit some specific places, if we only consider the spatial information of the movement,
reference spots are those dense regions containing more points than the other regions.
Note that the reference spots are obtained for individual objects.

There are many methods could be applied to detect the reference spots, such as
density-based clustering. The methods could vary according to different applications.
We adapt a popular kernel method [Worton 1989] which is designed for the purpose of
finding home ranges of animals. For human movement, we may use important location
detection methods in Liao et al. [2005] and Zheng et al. [2010].

While computing the density for each location in a continuous space is computa-
tionally expensive, we discretize the space into a regular w × h grid and compute the
density for each cell. The grid size is determined by the desired resolution to view the
spatial data. If an animal has frequent activities at one place, this place will have
higher probability to be its home. This actually aligns very well with our definition of
reference spots.

For each grid cell c, the density is estimated using the bivariate normal density
kernel

f (c) = 1
nγ 2

n∑
i=1

1
2π

exp
(

−|c − loci|2
2γ 2

)
,

where |c − loci| is the distance between cell c and location loci. In addition, γ is a
smoothing parameter which is determined by the following heuristic method [Worton
1989]

γ = 1
2

(
σ 2

x + σ 2
y

) 1
2 n− 1

6 ,

where σx and σy are the standard deviations of the whole sequence LOC in its x and
y-coordinates, respectively. The time complexity for this method is O(w · h · n).

After obtaining the density values, a reference spot can be defined by a contour
line on the map, which joins the cells of the equal density value with some density
threshold. The threshold can be determined as the top-p% density value among all the
density values of all cells. The larger the value p is, the bigger the size of reference spot.
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In practice, p can be chosen based on prior knowledge about the size of the reference
spots. In many real applications, we can assume that the reference spots are usually
very small on a large map (e.g., within 10% of whole area). So, by setting p% = 15%,
most parts of reference spots should be detected with high probability.

3.3.2. Periods Detection on Binary Sequence. Given a set of reference spots, we further
propose a method to obtain the potential periods within each spot separately. Viewed
from a single reference spot, the movement sequence now can be transformed into a
binary sequence B = b1b2 . . . bn, where bi = 1 when this object is within the reference
spot at timestamp i and 0 otherwise. In a discrete signal processing area, to detect
periods in a sequence, the most popular methods are Fourier transform and autocorre-
lation, which essentially complement each other in the following sense, as discussed in
Vlachos et al. [2005]. On one hand, Fourier transform often suffers the low-resolution
problem in the low-frequency region, hence provides poor estimation of large periods.
Also, the well-known spectral leakage problem of Fourier transform tends to generate
a lot of false positives in the periodogram. On the other hand, autocorrelation offers
accurate estimation for both short and large periods, but is more difficult to set the sig-
nificance threshold for important periods. Consequently, Vlachos et al. [2005] proposed
to combine Fourier transform and autocorrelation to find periods. Here, we adapt this
approach to find periods in the binary sequence B.

In Discrete Fourier Transform (DFT), the sequence B = b1b2 . . . bn is transformed into
the sequence of ncomplex numbers X1, X2, . . . , Xn. Given coefficients X, the periodogram
is defined as the squared length of each Fourier coefficient: Fk = ‖Xk‖2. Here, Fk is the
power of frequency k. In order to specify which frequencies are important, we need to
set a threshold and identify those higher frequencies than this threshold.

The threshold is determined using the following method. Let B′ be a randomly permu-
tated sequence from B. Since B′ should not exhibit any periodicities, even the maximum
power does not indicate the period in the sequence. Therefore, we record its maximum
power as pmax, and only the frequencies in B that have higher power than pmax may
correspond to real periods. To provide a 99% confidence level on what frequencies are
important, we repeat the aforesaid random permutation experiment 100 times and
record the maximum power of each permutated sequence. The 99-th largest value of
these 100 experiments will serve as a good estimator of the power threshold.

Given that Fk is larger than the power threshold, we still need to determine the exact
period in the time domain, because a single value k in frequency domain corresponds
to a range of periods [ n

k, n
k−1 ) in time domain. In order to do this, we use circular

autocorrelation which examines how similar a sequence is to its previous values for
different τ lags: R(τ ) = ∑n

i=1 bτ bi+τ .
Thus, for each period range [l, r) given by the periodogram, we test whether there is

a peak in {R(l), R(l + 1), . . . , R(r − 1)} by fitting the data with a quadratic function. If
the resulting function is concave in the period range, which indicates the existence of
a peak, we return t∗ = arg maxl≤t<r R(t) as a detected period. Similarly, we employ a
99% confidence level to eliminate false positives caused by noise.

For example, if a binary sequence has a period as T = 24, the periodogram could be
Figure 5(a). The red dashed line denotes the threshold of 99% confidence. There are two
points P1 and P2 that are above the threshold. In Figure 5(b), P1 and P2 are mapped to
a range of periods. We can see that there is only one peak, P1, corresponding to T = 24
on the autocorrelation curve.

3.4. Mining Periodic Behaviors

After obtaining the periods for each reference spot, now we study the task how to mine
periodic behaviors. We will consider the reference spots with the same period together
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Fig. 5. Finding periods.

in order to obtain more concise and informative periodic behaviors. But, since a behavior
may only exist in a partial movement, there could be several periodic behaviors with
the same period. For example, there are two daily behaviors in David’s movement. One
corresponds to the school days and the other one occurs during the summer. However,
given a long history of movement and a period as a “day,” we actually do not know
how many periodic behaviors exist in this movement and which days belong to which
periodic behavior. This motivates us to use a clustering method. Because the “days” that
belong to the same periodic behavior should have a similar temporal location pattern,
we propose a generative model to measure the distance between two “days.” Armed
with such a distance measure, we can further group the “days” into several clusters
and each cluster represents one periodic behavior. As in David’s example, “school days”
should be grouped into one cluster and “summer days” should be grouped into another
one. Note that we assume that for each period, such as “day,” one “day” will only belong
to one behavior.

In this section, we will formally present the technique to mine periodic behaviors.
Since every period in the movement will be considered separately, the rest of this
section will focus on one specific period T .

3.4.1. Modeling Periodic Behaviors. First, we retrieve all the reference spots with period
T . By combining the reference spots with the same period together, we will get more
informative periodic behaviors associated with different reference spots. For example,
we can summarize David’s daily behavior as “9:00∼18:00 at office and 20:00∼8:00 in
the dorm.” We do not consider combining two different periods in the current work.

Let OT = {o1, o2, . . . , od} denote reference spots with period T . For simplicity, we
denote o0 as any other locations outside the reference spots o1, o2, . . . , od. Given LOC =
loc1loc2 · · · locn, we generate the corresponding symbolized movement sequence S =
s1s2 . . . sn, where si = j if loci is within o j . S is further segmented into m = � n

T 
segments.3 We use I j to denote the j-th segment and tk (1 ≤ k ≤ T ) to denote the
k-th relative timestamp in a period. I j

k = i means that the object is within oi at tk in
the j-th segment. For example, for T = 24 (hours), a segment represents a “day,” t9

3If n is not a multiple of T , then the last (n mod T ) positions are truncated.
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denotes 9:00 in a day, and I5
9 = 2 means that the object is within o2 at 9:00 in the 5-th

day. Naturally, we may use the categorical distribution to model the probability of such
events.

Definition 2 (Categorical Distribution Matrix). Let T = {t1, t2,. . . ,tT } be a set of rel-
ative timestamps, xk be the categorical random variable indicating the selection of
reference spot at timestamp tk. P = [p1, . . . , pT ] is a categorical distribution matrix
with each column pk = [p(xk = 0), p(xk = 1), . . . , p(xk = d)]T being an independent
categorical distribution vector satisfying

∑d
i=0 p(xk = i) = 1.

Now, suppose I1, I2, . . ., Il follow the same periodic behavior. The probability that
the segment set I = ⋃l

j=1 I j is generated by some distribution matrix P is

P(I|P) =
∏
I j∈I

T∏
k=1

p
(
xk = I j

k

)
.

Now, we formally define the concept of periodic behavior.

Definition 3 (Periodic Behavior). Let I be a set of segments. A periodic behavior
over all the segments in I, denoted as H(I), is a pair 〈T , P〉. T is the period and P
is a probability distribution matrix. We further let |I| denote the number of segments
covered by this periodic behavior.

3.4.2. Discovery of Periodic Behaviors. With the definition of periodic behaviors, we are
able to estimate periodic behaviors over a set of segments. Now given a set of segments
{I1, I2, . . . , Im}, we need to discover which segments are generated by the same periodic
behavior. Suppose there are K underlying periodic behaviors, each of which exists in
a partial movement, the segments should be partitioned into K groups so that each
group represents one periodic behavior.

A potential solution to this problem is to apply some clustering methods. In order
to do this, a distance measure between two periodic behaviors needs to be defined.
Since a behavior is represented as a pair 〈T , P〉 and T is fixed, the distance should
be determined by their probability distribution matrices. Further, a small distance
between two periodic behaviors should indicate that the segments contained in each
behavior are likely to be generated from the same periodic behavior.

Several measures between the two probability distribution matrices P and Q can
be used to fulfill these requirements. Here, since we assume the independence of vari-
ables across different timestamps, we propose to use the well-known Kullback-Leibler
divergence as our distance measure.

KL(P‖Q) =
T∑

k=1

d∑
i=0

p(xk = i) log
p(xk = i)
q(xk = i)

When KL(P‖Q) is small, it means that the two distribution matrices P and Q are
similar, and vice versa.

Suppose there exist K underlying periodic behaviors, there are many ways to group
the segments into K clusters with the distance measure defined. However, the number
of underlying periodic behaviors (i.e., K) is usually unknown. So we propose a hierar-
chical agglomerative clustering method to group the segments while at the same time
determining the optimal number of periodic behaviors. Ideally, during the hierarchical
agglomerative clustering, the segments generated from the same behavior should be
merged first because they have smaller KL-divergence distance. Thus, we judge a clus-
ter as good if all the segments in the cluster are concentrated in one single reference
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spot at a particular timestamp. Hence, a natural representation error measure to eval-
uate the representation quality of a cluster is as follows. Note that here we exclude the
reference spot o0 which essentially means the location is unknown.

Definition 4 (Representation Error). Given a set of segments C ={I1, I2,. . . ,Il} and
its periodic behavior H(C) = 〈T , P〉, the representation error is

E(C) =
∑

I j∈C
∑T

i=1 1I j
i �=0 · (

1 − p
(
xi = I j

i

))
∑

I j∈C
∑T

i=1 1I j
i �=0

.

At each iteration, all the segments are partitioned into k clusters {C1, C2, . . . , Ck}. The
overall representation error at current iteration is calculated as the mean over all
clusters.

Ek = 1
k

k∑
i=1

E(Ci)

During the clustering process, we monitor the change of Ek. If Ek exhibits a dramatic
increase comparing with Ek−1, it is a sign the newly merged cluster may contain two
different behaviors and k − 1 is likely to be a good choice of K. The degree of such
change can be observed from the derivative of E over k, ∂E

∂k . Since a sudden increase of
E will result in a peak in its derivative, we can find the optimal K as K = arg maxk

∂E
∂k .

4. MINING SWARM PATTERNS

4.1. Introduction

A moving object cluster can be defined in both spatial and temporal dimensions: (1) a
group of moving objects should be geometrically close to each other, and (2) they should
be together for at least some minimum time duration.

There have been many recent studies on mining moving object clusters. One line of
study is to find moving object clusters including moving clusters [Kalnis et al. 2005],
flocks [Gudmundsson et al. 2004; Gudmundsson and van Kreveld 2006; Benkert et al.
2008], and convoys [Jeung et al. 2008c, 2008b]. The common part of such patterns is
that they require the group of moving objects to be together for at least k consecutive
timestamps, which might not be practical in the real cases.

Another line of study of moving object clustering is trajectory clustering [Vlachos
et al. 2002; Chen et al. 2005; Gaffney et al. 2006; Lee et al. 2007], which puts emphasis
on geometric or spatial closeness of object trajectories. However, objects that are essen-
tially moving together may not share similar geometric trajectories. In real life, there
are often cases that a set of moving objects (e.g., birds, flies, and mammals) hardly
stick together all the time; they do travel together, but only gather together at some
timestamps.

We propose a new movement pattern, called swarm, which is a more general type of
moving object clusters. More precisely, swarm is a group of moving objects containing
at least mino individuals who are in the same cluster for at least mint timestamp snap-
shots. If we denote this group of moving objects as O and the set of these timestamps as
T , a swarm is a pair (O, T ) that satisfies the precedly constraints. Specially, the times-
tamps in T are not required to be consecutive, the detailed geometric trajectory of each
object becomes unimportant, and clustering methods and/or measures can be flexible
and application dependent (e.g., density-based clustering versus Euclidean distance-
based clustering). To avoid finding redundant swarms, we further propose the closed
swarm concept. The basic idea is that if (O, T ) is a swarm, it is unnecessary to output
any subset O′ ⊆ O and T ′ ⊆ T even if (O′, T ′) may also satisfy swarm requirements.
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Efficient discovery of complete set of closed swarms in a large moving object database
is a nontrivial task. First, the size of all the possible combinations is exponential
(i.e., 2|ODB| × 2|OT B|) whereas the discovery of moving clusters, flocks, or convoys has
polynomial solution due to stronger constraint posed by their definitions based on k
consecutive timestamps. Second, although the problem is defined using the similar
form of frequent pattern mining [Agrawal and Srikant 1994; Han et al. 2004], none
of previous work [Agrawal and Srikant 1994; Han et al. 2004; Zaki and Hsiao 2002;
Yan et al. 2003; Pei et al. 2000; Wang et al. 2003] solves exactly the same problem as
finding swarms. In the typical frequent pattern mining problem, the input is a set of
transactions and each transaction contains a set of items. However, the input of our
problem is a sequence of timestamps and there is a collection of (overlapping) clusters
at each timestamp. Thus, the discovery of swarms poses a new problem that needs to
be solved by specifically designed techniques.

Facing the huge potential search space, we propose an efficient method, ObjectGrowth.
In ObjectGrowth, besides the Apriori Pruning Rule which is commonly used, we design
a novel Backward Pruning Rule which uses a simple checking step to stop unnecessary
further search. Such a pruning rule could cover several redundant cases at the same
time. After our pruning rules cut a great portion of unpromising candidates, the leftover
number of candidate closed swarms could still be large. To avoid the time-consuming
pairwise closure checking in the postprocessing step, we present a Forward Closure
Checking step that can report the closed swarms on-the-fly. Using this checking rule,
no space is needed to store candidates and no extra time is spent on postprocessing to
check closure property.

4.2. Problem Definition

Let ODB = {o1, o2, . . . , on} be the set of all moving objects and TDB = {t1, t2, . . . , tm} be
the set of all timestamps in the database. A subset of ODB is called an objectset O. A
subset of TDB is called a timeset T . The size, |O| and |T |, is the number of objects and
timestamps in O and T , respectively.

Database of clusters. A database of clusters, CDB = {Ct1 , Ct2 , . . . , Ctm}, is the collection
of snapshots of the moving object clusters at timestamps {t1, t2, . . . , tm}. We use Cti (o j) to
denote the set of clusters that object o j is in at timestamp ti. Note that an object could
belong to several clusters at one timestamp. In addition, for a given objectset O, we
write Cti (O) = ⋂

o j∈O Cti (o j) for short. To make our framework more general, we take
clustering as a preprocessing step. The clustering methods could be different based on
various scenarios.

Swarm and closed swarm. A pair (O, T ) is said to be a swarm if all objects in O are
in the same cluster at any timestamp in T . Specifically, given two minimum thresholds
mino and mint, for (O, T ) to be a swarm, where O = {oi1 , oi2 , . . . , oip} ⊆ ODB and T ⊆ TDB,
it needs to satisfy three requirements.

(1) |O| ≥ mino: There should be at least mino objects.
(2) |T | ≥ mint: Objects in O are in the same cluster for at least mint timestamps.
(3) Cti (oi1 ) ∩ Cti (oi2 ) ∩ · · · ∩ Cti (oip) �= ∅ for any ti ∈ T : there is at least one cluster

containing all the objects in O at each timestamp in T .

To avoid mining redundant swarms, we further give the definition of closed swarm.
A swarm (O, T ) is object-closed if fixing T , O cannot be enlarged (�O′ such that (O′, T )
is a swarm and O � O′). Similarly, a swarm (O, T ) is time-closed if fixing O, T cannot
be enlarged (�T ′ such that (O, T ′) is a swarm and T � T ′). Finally, a swarm (O, T )
is a closed swarm iff it is both object-closed and time-closed. Our goal is to find the
complete set of closed swarms.
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Fig. 6. Snapshots of object clusters at t1 to t4.

We use the following example as a running example in the remaining sections to give
an intuitive explanation of our methods. We set mino = 2 and mint = 2 in this example.

Example 1 (Running Example). Figure 6 shows the input of our running example.
There are 4 objects and 4 timestamps (ODB = {o1, o2, o3, o4}, TDB = {t1, t2, t3, t4}). Each
subfigure is a snapshot of object clusters at each timestamp. It is easy to see that
o1, o2, and o4 travel together for most of the time, and o2 and o4 form an even more
stable swarm since they are close to each other in the whole time span. Given mino = 2
and mint = 2, there are totally 15 swarms: ({o1, o2}, {t1, t2}), ({o1, o4}, {t1, t2}), ({o2, o4},
{t1, t3, t4}), and so on.

But it is obviously redundant to output swarms like ({o2, o4}, {t1, t2}) and ({o2, o4},
{t2, t3, t4}) (not time-closed) since both of them can be enlarged to form another swarm:
({o2, o4}, {t1, t2, t3, t4}). Similarly, ({o1, o2}, {t1, t2, t4}) and ({o2, o4}, {t1, t2, t4}) are redundant
(not object-closed) for both of them can be enlarged as ({o1, o2, o4}, {t1, t2, t4}). There are
only two closed swarms in this example: ({o2, o4}, {t1, t2, t3, t4}) and ({o1, o2, o4}, {t1, t2, t4}).
4.3. Algorithm Overview

The pattern we are interested in here, swarm, is a pair (O, T ) of objectset O and
timeset T . At the first glance, the number of different swarms could be (2|ODB| × 2|TDB|),
that is, the size of the search space. However, for a closed swarm, the following lemma
shows that if the objectset is given, the corresponding maximal timeset can be uniquely
determined.

LEMMA 1. For any swarm (O, T ), O �= ∅, there is a unique time-closed swarm (O, T ′)
such that T ⊆ T ′.

In the running example, if we set the objectset as {o1, o2}, its maximal corresponding
timeset is {t1, t2, t4}. Thus, we only need to search all subsets of ODB. In this way, the
search space shrinks from (2|ODB| × 2|TDB|) to 2|ODB|. Note that the time complexity in the
worst case is O(c × 2|ODB|), where c is time spent at the each node in the search.

Basic idea of our algorithm. From the preceding analysis we see that, to find closed
swarms, it suffices to only search all the subsets O of moving objects ODB. For the search
space of ODB, we perform depth-first search of all subsets of ODB, which is illustrated
as preorder tree traversal in Figure 7: tree nodes are labeled with numbers denoting
the depth-first search order (nodes without numbers are pruned).

Despite this, the search space is still huge for enumerating the objectsets in ODB
(2|ODB|). So efficient pruning rules are demanded to speed up the search process. We
design two efficient pruning rules to further shrink the search space. The first pruning
rule, called Apriori Pruning Rule, is to stop traversing the subtree when we find fur-
ther traversal cannot satisfy mint. The second pruning rule, called Backward Pruning
Rule, is to make use of the closure property. It checks whether there is a superset of
the current objectset which has the same maximal corresponding timeset as that of
the current one. If so, the traversal of the subtree under the current objectset is mean-
ingless. In previous works [Pei et al. 2000; Zaki and Hsiao 2002; Wang et al. 2003]
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Fig. 7. ObjectGrowth search space (mino = 2, mint = 2).

on closed frequent pattern mining, there are three pruning rules (i.e., item-merging,
sub-itemset pruning, and item skipping) to cover different redundant search cases. We
simply use one pruning rule to cover all these cases and we will prove that we only
need to examine each superset with one more object of the current objectset. Armed
with these two pruning rules, the size of the search space can be significantly reduced.

After pruning the invalid candidates, the remaining ones may or may not be closed
swarms. A brute-force solution is to check every pair of the candidates to see if one
makes the other violate the closed swarm definition. But the time spent on this post-
processing step is the square of the number of candidates, which is costly. Our proposal,
Forward Closure Checking, is to embed a checking step in the search process. This
checking step immediately determines whether a swarm is closed after the subtree un-
der the swarm is traversed, and takes little extra time (actually, O(1) additional time
for each swarm in the search space). Thus, closed swarms are discovered on-the-fly and
no extra postprocessing step is needed.

In the following subsections, we present the details of our ObjectGrowth algorithm.

4.4. The ObjectGrowth Method

ObjectGrowth method is a Depth-First Search (DFS) framework based on the objectset
search space (i.e., the collection of all subsets of ODB). First, we introduce the definition
of maximal timeset. Intuitively, for an objectset O, the maximal timeset Tmax(O) is the
one such that (O, Tmax(O)) is a time-closed swarm. For an objectset O, the maximal
timeset Tmax(O) is well-defined, because Lemma 1 shows the uniqueness of Tmax(O).

Definition 5 (Maximal Timeset). Timeset T = {tj} is a maximal timeset of objectset
O = {oi1 , oi2 , . . . , oim} if:

(1) Ctj (oi1 ) ∩Ctj (oi2 ) ∩ · · · ∩ Ctj (oim) �= ∅, ∀tj ∈ T ;
(2) �tx ∈ TDB \ T , such that Ctx (oi1 ) ∩ · · · ∩ Ctx (oim) �= ∅. We use Tmax(O) to denote the

maximal timeset of objectset O.

In the running example, for O = {o1, o2}, Tmax(O) = {t1, t2, t4} is the maximal timeset
of O.

The objectset space is visited in a DFS order. When visiting each objectset O, we
compute its maximal timeset. And three rules are further used to prune redundant
search and detect the closed swarms on-the-fly.

4.4.1. Apriori Pruning Rule. The following lemma is from the definition of Tmax.

LEMMA 2. If O ⊆ O′, then Tmax(O′) ⊆ Tmax(O).

This lemma is intuitive. When objectset grows bigger, the maximal timeset will
shrink or at most keep the same. This further gives the following pruning rule.
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Rule 1 (Apriori Pruning Rule). For an objectset O, if |Tmax(O)| < mint, then there
is no strict superset O′ of O (O′ �= O) such that (O′, Tmax(O′)) is a (closed) swarm.

In Figure 7, the nodes with objectset O = {o1, o3} and its subtree are pruned by the
Apriori Pruning Rule, because Tmax(O) < mint, and all objectsets in the subtree are
strict supersets of O. Similarly, for the objectsets {o2, o3}, {o3, o4} and {o1, o2, o3}, the
nodes with these objectsets and their subtrees are also pruned by the Apriori Pruning
Rule.

4.4.2. Backward Pruning Rule. By using the Apriori Pruning Rule, we prune objectsets
O with Tmax(O) < mint. However, the pruned search space could still be extremely huge
as shown in the following example.

Suppose there are 100 objects which are all in the same cluster for the whole time
span. Given mino = 1 and mint = 1, we can hardly prune any node using this the
Apriori Pruning Rule. The number of objectsets we need to visit is 2100! But it is easy
to see that there is only one closed swarm: (ODB, TDB). We can get this closed swarm
when we visit the objectset O = ODB in the DFS after 100 iterations. After that, we
waste a lot of time searching objectsets which can never produce any closed swarms.

Since our goal is to mine only closed swarms, we can develop another stronger
pruning rule to prune the subtrees which cannot produce closed swarms. Let us take
some observations in the running example first.

In Figure 7, for the node with objectset O = {o1, o4}, we can insert o2 into O and form
a superset O′ = {o1, o2, o4}. O′ has been visited and expanded before visiting O. And
we can see that Tmax(O) = Tmax(O′) = {t1, t2, t4}. This indicates that for any timestamp
when o1 and o4 are together, o2 will also be in the same cluster as them. So for any
superset of {o1, o4} without o2, it can never form a closed swarm. Meanwhile, o2 will
not be in O’s subtree in the depth-first search order. Thus, the node with {o1, o4} and
its subtree can be pruned.

To formalize the Backward Pruning Rule, we first state the following lemma.

LEMMA 3. Consider an objectset O = {oi1 , oi2 , . . . , oim} (i1 < i2 < . . . < im), if there
exists an objectset O′ such that O′ is generated by adding an additional object oi′ (oi′ /∈ O
and i′ < im) into O such that Ctj (O) ⊆ Ctj (oi′), ∀tj ∈ Tmax(O), then for any objectset O′′

satisfying O ⊆ O′′ but O′ � O′′, (O′′, Tmax(O′′)) is not a closed swarm.

Note that when overlapping is not allowed in the clusters, the condition Ctj (O) ⊆
Ctj (oi′), ∀tj ∈ Tmax(O) simply reduces to Tmax(O′) = Tmax(O). Armed with the preceding
lemma, we have the following pruning rule.

Rule 2 (Backward Pruning Rule). Let O = {oi1 , oi2 , . . . , oim} (i1 < i2 < . . . < im) be
an objectset. If there exists an objectset O′ such that O′ is generated by adding an
additional object oi′ (oi′ /∈ O and i′ < im) into O such that Ctj (O) ⊆ Ctj (oi′ ), ∀tj ∈ Tmax(O),
then O can be pruned in the objectset search space (stop growing from O in the depth-
first search).

Backward Pruning Rule is efficient in the sense that it only needs to examine those
supersets of O with one more object rather than all the supersets. This rule can prune a
significant portion of the search space for mining closed swarms. Experimental results
(see Figure 15) show that the speedup (compared with the algorithms for mining all
swarms without this rule) is an exponential factor with respect to the dataset size.

4.4.3. Forward Closure Checking. To check whether a swarm (O, Tmax(O)) is closed, from
the definition of closed swarm, we need to check every superset O′ of O and Tmax(O′).
But, actually, according to the following lemma, checking the superset O′ of O with one
more object suffices.
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LEMMA 4. The swarm (O, Tmax(O)) is closed iff for any superset O′ of O with exactly
one more object, we have |Tmax(O′)| < |Tmax(O)|.

In Figure 7, the node with objectset O = {o1, o2} is not pruned by any pruning rules.
But it has a child node with objectset {o1, o2, o4} having same maximal timeset as
Tmax(O). Thus ({o1, o2}, {t1, t2, t4}) is not a closed swarm because of Lemma 4.

Consider a superset O′ of objectset O = {oi1 , . . . , oim} s.t. O′ \ O = {oi′ }. Rule 2 checks
the case that i′ < im. The following rule checks the case that i′ > im.

Rule 3 (Forward Closure Checking). Let O = {oi1 , oi2 ,. . . ,oim} (i1 < i2 < . . . < im) be
an objectset. If there exists an objectset O′ such that O′ is generated by adding an
additional object oi′ (oi′ /∈ O and i′ > im) into O, and |Tmax(O′)| = |Tmax(O)|, then (O, T )
is not a closed swarm.

Note, unlike Rule 2, Rule 3 does not prune the objectset O in the DFS. In other words,
we cannot stop DFS from O. But this rule is useful for detecting nonclosed swarms.

4.4.4. ObjectGrowth Algorithm. Figure 7 shows the complete ObjectGrowth algorithm for
our running example. We traverse the search space in DFS order. When visiting the
node with O = {o1, o2, o3}, it fails to pass the Apriori Pruning Rule. So we stop growing
from it, trace back, and visit node O = {o1, o2, o4}. O passes both pruning rules as
well as Forward Closure Checking. By Theorem 1 that will be introduced immediately
afterwards, O and its maximal timeset T = {t1, t2, t4} form a closed swarm. So we can
output (O, T ). When we trace back to node {o1, o2}, because its child contains a closed
swarm with the same timeset as {o1, o2}’s maximal timeset, {o1, o2} will not be a closed
swarm by the Forward Closure Checking. We continue visiting the nodes until we finish
the traversal of objectset-based DFS tree.

THEOREM 1 (IDENTIFICATION OF CLOSED SWARM IN OBJECTGROWTH). For a node with ob-
jectset O, (O, Tmax(O)) is a closed swarm if and only if it passes the Apriori Pruning
Rule, Backward Pruning Rule, Forward Closure Checking, and |O| ≥ mino.

Theorem 1 makes the discovery of closed swarms well embedded in the search process
so that closed swarms can be reported on-the-fly.

5. EXPERIMENT

In this section, we present the experimental results along with the MoveMine system.
We focus on the study of periodic behavior mining and swarm pattern mining, which
are described in Section 5.1 and Section 5.2 separately. In each function study, we
show the function in the MoveMine system, advanced effectiveness study on another
dataset, and effectiveness/efficiency study with different parameters.

Most of the datasets are from MoveBank.org. The MoveMine was implemented in
C#. All the efficiency experiments are carried out on a 2.8 GHz Intel Core 2 Duo system
with 4GB memory.

5.1. Periodic Behavior Mining

5.1.1. Periodic Behavior Function in MoveMine. We now test our method on a real bald
eagle movement. We pick this bald eagle data because this bald eagle has an obvious
yearly migration pattern that has already been verified by biologists. We want to test
our methods to see whether we can successfully detect such periodic behavior. The data
contains a 3-year tracking (2006.1∼2008.12) of a bald eagle in North America. In the
MoveMine system, people can select an individual moving object. Figure 8 shows the
movement data of one bald eagle in Google Map. It is an enlarged area of Northeast in
America and Quebec area in Canada. The data is preprocessed by linearly interpolation
using the sampling rate as a day.
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Fig. 8. Trajectory of one bald eagle.
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Fig. 9. Intermediate results of periodic behaviors

As shown in Figure 9(a), three reference spots are detected in areas of New York,
Great Lakes, and Quebec. By applying period detection to each reference spot, we obtain
the periods for each reference spots, which are 363, 363, and 364 days, respectively.
The periods can be roughly explained as a year. It is a sign of yearly migration in the
movement.

Now we check the periodic behaviors mined from the movement. Ideally, we want
to consider three reference spots together because they all show the yearly period.
However, we may discover that the periods are not exactly the same for all the reference
spots. This is a very practical issue. In real cases, we can hardly get perfectly the same
period for some reference spots. So, we should relax our constraint and consider the
reference spots with similar periods together. If the difference of periods is within some
tolerance threshold, we take the average of these periods and set it as the common
period. Here, we take period T as 363 days, and the probability matrix is summarized
in Figure 9(b). Using such probability matrix, we can well explain the yearly migration
behavior as follows.

This golden eagle stays in the New York area (i.e., reference spot # 1) from December to March. In March,
it flies to the Great Lakes area (i.e., reference spot #2) and stays there until the end of May. It flies to
the Quebec area (i.e., reference spot #3) in the summer and stays there until late September. Then it
flies back to Great Lakes again staying there from mid-October to mid-November and goes back to New
York in December.

In the MoveMine system, Figure 10 shows the periodic route by take the “av-
erage” locations over 3 years. This real example shows the periodic behaviors
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Fig. 10. Periodic route of one bald eagle.

mined from the movement and provides an insightful explanation for the movement
data.

5.1.2. Synthetic Movement. In order to test the effectiveness under various scenarios, we
design a generator for moving objects with periodicity according to a set of parameter
values. These parameters are the length nof the time history (in timestamps), period T ,
the probability α for a periodic segment in the object’s movement to comply with regular
movement, the probability β for the noise for each timestamp in a regular periodic
segment, and the variance σ of normal distribution to add temporal perturbations to
the periodic segment.

Before generating the movement, we first create several reference spots. Each
reference spot is a small circle with radius ranges from 1% to 5% of the map size. A
standard segment segstd with length T is the movement following the regular periodic
pattern. For example, for T = 24 (hours), segstd could be designed as 6:00pm∼8:00am
at reference spot A (such as home) and 8:30am∼5:30pm hours at reference spot B (such
as office). Then, the movement of the object is generated. For every segment seg, we
first determine whether s should be a regular segment or not, given the probability α.

If seg is a regular segment, the object’s movement is generated as follows. According
to standard segment, suppose that from timestamp t0 to t1 the object is at reference
spot A, we further perturb t0 and t1 with some normal distribution (i.e., t′

0 = N(t0, σ 2),
t′
1 = N(t1, σ 2)). For all the experiments, we fix σ = 0.5. Finally, with probability 1 − β,

the object is at a random location within the circle of reference spot A from t′
0 to t′

1.
For other timestamps that are not confined to any reference spot, a random location
is generated. If seg is an irregular segment, for each timestamp, a random location is
assigned.

Suppose that there are 4 reference spots. Imagine them as “home”, “office”, “gym”, and
“class”. A standard movement segment is generated as 20:00∼8:00 at home every day;
9:00∼14:00 at office on weekdays; 15:00∼17:00 at gym on Tuesdays and Thursdays;
15:00∼17:00 at class on Mondays, Wednesdays, and Fridays. Furthermore, we choose
n = 8400, α = 0.9 and β = 0.1.

The periods detected for each reference spot are shown in Table III. There are two
periods detected: 24 (i.e., day) and 168 (i.e., week). It is interesting to see that office
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Table III. Periods Detected

Obs. Spot Home Office Gym Class
Periods (hours) 24 24, 168 168 168
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Fig. 11. Periodic behaviors.

has both 24 and 168 as the periods. This is because office is visited “almost” every day
except weekends. So both day and week are reasonable periods.

There is one daily behavior and one weekly behavior. Their probability matrices
are illustrated in Figure 11. In Figure 11(a), we can infer that this person leaves
home around 8:00am because the probability starts to drop at 8:00am. In the weekly
movement shown in Figure 11(b), 9:00∼14:00 weekdays, the person stays in the office
with high probability. Gym is involved with Tuesday and Thursday afternoons and
class is involved with Monday, Wednesday, and Friday afternoons. The behaviors on
weekends are unknown.

5.1.3. Effectiveness Study with respect to Parameters. We further verify the effectiveness of
our algorithms with respect to the two parameters we introduced at the beginning of
this section, α and β, on synthetic datasets. Recall that α represents the proportion
of regular segments in the whole sequence and β indicates the level of random noise.
Again we use our running example to generate the synthetic data. This time, we vary
α from 1 to 0.6, and simultaneously we choose β from 0 to 0.5. We test the effectiveness
of the period detection algorithm and the summarization algorithm separately. All
experiments are repeated 100 times and the results are averaged.

For the period detection algorithm, we report the success rates in Figure 12(a).
Since we know the ground truth (T = 24), we judge a trial is successful if among all
detected periods, the one with the large correlation value is within the range [23, 25].
When α = 0.8 and β = 0.5, it means that 80% days the object follows the regular
daily behavior. And in those 80% days, there is 50% probability that the object is not
at its regular location as it is supposed to be. As we can see from Figure 12(a), our
period detection algorithm is nearly perfect in all cases with α ≥ 0.8. This means
that as long as 80% segments follow the periodic behavior, we can detect such a period
successfully even if there is much noise in those regular segments. When α drops to 0.7,
the success rate becomes much lower. It indicates that our method is more sensitive to
the portion of irregular segments (i.e., α) but not that sensitive to random noise (i.e.,
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Fig. 13. Raw buffalo data.

β). Furthermore, since irregular segments often reflect the changes of behaviors in the
movement, the sensitivity to the irregular segments is also desirable for our algorithm
which is designed for mining periodic behaviors.

For the summarization algorithm, we show in Figure 12(b) the representation error
for K = 10 as defined in Section 3.4.2. To see the significance of the result, observe
that, for example, with α = 0.9 and β = 0.1, if we use 10 clusters to summarize all
the daily segments of one year, the representation error is about 0.2. This means that
we can obtain compact high-quality summarization even with moderate amount of
irregularity and noise. This further shows that our algorithm is indeed able to filter
out redundancy between the segments which are generated by periodic behaviors and
therefore reveals the true behaviors.

5.2. Swarm Pattern Mining

5.2.1. Swarm Pattern Mining in the MoveMine System. The effectiveness of swarm patterns
can be demonstrated through our online demo system. Here, we use one dataset as an
example to show the effectiveness. This dataset contains 165 buffalo with tracking time
from year 2000 to year 2006. The original data has 26610 reported locations. Figure 13
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Fig. 14. Effectiveness comparison between swarm and convoy.

shows the raw data plotted in Google Map. We pick this dataset because it contains a
considerably large number of objects and also the tracking time is very long. Besides,
we have biologists manually label data on the herds assignment, so we can better check
the effectiveness of our swarm pattern.

For each buffalo, the locations are reported about every 3 or 4 days. We first use
linear interpolation to fill in the missing data with time gap as one “day.” Note that
the first/last tracking days for each buffalo could be different. The buffalo movement
with longest tracking time contains 2023 days and the one with shortest tracking time
contains only 1 day. On average, each buffalo contains 901 days. We do not interpolate
the data to enforce the same first/last tracking day. Instead, we require the objects
that form a swarm should be together for at least mint relative timestamps over their
overlapping tracking timestamps. For example, by setting mint = 0.5, o1 and o2 form a
swarm if they are close for at least half of their overlapping tracking timestamps. Then,
DBSCAN [Ester et al. 1996] with parameter MinPts = 5 and Eps = 0.001 is applied
to generate clusters at each timestamp (i.e., CDB). Note that, regarding users’ specific
requirements, different clustering methods and parameter settings can be applied to
preprocess the raw data.

By setting mino = 2 (i.e., at least 2 objects) and mint = 0.5 (i.e., half of the overlapping
time span), we can find 66 closed swarms. Figure 14(a) shows one swarm. Each color
represents the raw trajectory of a buffalo. This swarm contains 5 buffalo. And the
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timestamps that these buffalo are in within the same cluster are nonconsecutive.
Interestingly, the swarms we detected from buffalo data are actually the herds that
were manually labeled by biologists. When biologists were tracking these animals, they
assigned animals to different herds for some timestamps. It is a time-consuming job for
biologists to do manual labeling, especially when tracking lots of animals for long time.
Our automatic discovery of the swarms can help them do this job and provide them
useful information to further examine the relationship and habits of these buffalo. At
the same time, the way that biologists assign the herd label also gives us motivation
to further improve our swarm pattern method. When biologists identify the herds,
they will identify big herds and small herds. That means there are different degrees of
herds. Some have closer relationship. Therefore, it is interesting to rank our swarms
based on such a degree. So we can give biologists more information on the degree of
the relationship in one swarm. We consider this as a promising future work.

For comparison, we test convoy pattern mining on the same dataset. Note that there
are two parameters in convoy definition, m (number of objects) and k (threshold of
consecutive timestamps). So m actually equals to mino and k is the same as mint. We
first use the same parameters (i.e., mino = 2 and mint = 0.5) to mine convoys. However,
no convoy is discovered. This is because there is no group of buffalo that move together
for consecutively half of the whole time span. By lowering the parameter mint from
0.5 to 0.2, there is one convoy discovered as shown in Figure 14(b). But this convoy,
containing 2 buffalo, is just a subset of one swarm pattern. The rigid definition of
convoy makes it not practical to find potentially interesting patterns. The comparison
shows that the concept of (closed) swarms is especially meaningful in revealing relaxed
temporal moving object clusters.

5.2.2. Efficiency Study with respect to Parameters. To show the efficiency of our algorithms,
we generate a larger synthetic dataset using Brinkhoff ’s network-based generator of
moving objects.4 We generate 500 objects (|ODB| = 500) for 105 timestamps (|TDB| =
105) using the generator’s default map and parameter setting. There are 5 · 107 points
in total. DBSCAN (MinPts= 3, Eps = 300) is applied to get clusters at each snapshot.

We will compare our algorithms with VG-Growth [Wang et al. 2006], which is the
only previous work addressing the nonconsecutive timestamps issue. VG-Growth is
developed in Wang et al. [2006] to mine group patterns. The definition of group pattern
is similar to that of the swarm, which also addresses time relaxation issue. Group
pattern is a set of moving objects that stay within a disc with max dis radius for
min wei period and each consecutive time segment is no less than min dur. Wang
et al. [2006] develop the VG-Growth method whose general idea is depth-first search
based on conditional VG-graph. Although the idea of group pattern is well-motivated,
the problem is not well-defined. First, the “closeness” of moving objects is confined to
be within a max dis disk. A fixed max dis for all group patterns could not produce
natural cluster shapes. Second, since it does not consider the closure property of group
patterns, it will produce an exponential number of redundant patterns that severely
hinders efficiency. All these problems can be solved in our work by using density-based
clustering to define “closeness” flexibly and introducing the closed swarm definition.

To make fair comparison on efficiency, we adapt VG-Growth to accommodate clusters
as input. We set min dur = 1 and min wei = mint. Since the search space of VG-Growth
is the same as our methods to produce swarms, it is equivalent to compare the latter
ones with our proposed closed swarm methods. To produce swarms, we can simply
omit the Backward Pruning Rule and Forward Closure Checking in ObjectGrowth. So
VG-Growth is essentially searching on objectset and using Apriori pruning rule only.

4http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
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Fig. 15. Running time on synthetic dataset.

The algorithms are compared with respect to two parameters (i.e., mino and mint) and
the database size (i.e., ODB and TDB). By default, |ODB| = 500, |TDB| = 105, mino

|ODB| = 0.01,
mint
|TDB| = 0.01. We carry out four experiments by varying one variable with the other three
fixed. Note that in the following experiment part, we use mino to denote the ratio of
mino over ODB and mint to denote the ratio of mint over TDB.

Efficiency with respect to mino and mint. Figure 15(a) shows the running time with re-
spect to mino. It is obvious that VG-Growth takes much longer time than ObjectGrowth.
VG-Growth cannot even produce results within 5 hours when mino = 0.018 in Fig-
ure 15(a). The reason is that VG-Growth tries to find all the swarms rather than closed
swarms, and the number of swarms is exponentially larger than that of closed swarms
as shown in Figure 16(a) and Figure 16(b).

Efficiency with respect to |ODB| and |TDB|. Figure 15(c) and Figure 15(d) depict the
running time when varying |ODB| and |TDB| respectively. In both figures, VG-Growth
is much slower than ObjectGrowth. Comparing Figure 15(c) and Figure 15(d), we can
see that ObjectGrowth is more sensitive to the change of ODB. This is because its search
space is enlarged with larger ODB whereas the change of TDB does not directly affect
the running time of ObjectGrowth.

In summary, ObjectGrowth greatly outperforms VG-Growth since the number of
swarms is exponential to the number of closed swarms. Besides, both ObjectGrowth
are more sensitive to the size of ODB rather than that of TDB since the search space is
based on the objectset.

6. DISCUSSION

In this section, we discuss the related works addressing the similar issues of periodic
pattern and swarm pattern and point out how our methods can be further extended to
solve other movement mining problems.

6.1. Periodic Behavior and its Extension

6.1.1. Frequent Periodic Patterns with a Given Period. Mamoulis et al. [2004] is the first
work to study the periodic patterns of the moving objects. Give a movement sequence,
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Fig. 16. Number of (closed) swarms in synthetic dataset.

a minimum support min sup, and an integer T , called period, a periodic pattern P is
a T -length sequence of the form r0r1 . . . rT −1, where ri is a spatial region or the sepcial
character ∗, indicating the whole spatial universe. For example, with T = 3, a periodic
pattern AB ∗ C implies that at the beginning of the cycle, the object is in region A, at the
next timestamp, it is found in region B, then it moves irregularly (it can be anywhere),
then it goes to region C. A periodic pattern P has to repeat itself for at least min sup
times in the movement sequence to become a frequent pattern.

The major problem of this method is that the period is given instead of automatically
detected. Even though we could give period as one “day” or one “week” for human
movement, animals do not follow human clocks. For example, when animals do yearly
migration, they are not repeating it every 365 days. The yearly period for animals
could be 363 days or 364 days. Similarly, animals having a daily period may not strictly
follow the pattern every 24 hours. Their daily behaviors change according to seasons. In
summer, they could have longer hours staying outside, and in winter, they may spend
longer time sleeping. So the period actually changes at different times or at different
locations. If we apply a frequent pattern mining method with one given period, the
movement will be aligned incorrectly and the mined patterns become less meaningful.
However, in our Periodica method, we can detect every possible approximate period
hidden in the movement. Each reference spot could be associated with different periods.
And we are only interested in those spots having periodic behaviors. This also filters
out the spatial noise and randomness in the movement.

Furthermore, as we introduce in Section 3, periodic behaviors actually give a sta-
tistical summarization of the periodic patterns. However, frequent periodic patterns
mined from Mamoulis et al. [2004] could produce redundancies which are not useful
for people to get an overall understanding of the patterns, for example, if a bird usually
wakes up around 6:00 and flies out of the nest around that time, as shown in Table IV,
where A indicates the nest and B indicates the activity area. Since the time it wakes up
is not fixed at 6:00 sharp, it flies out of the nest sometimes early and sometimes late.
Periodic behaviors in Table V reflect such uncertainties in the movement. We can see
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Table IV. An Example of a Possible Bird Movement (A indicates
the nest and B indicates its activity area)

day ... 5:00 6:00 7:00 8:00 9:00 ...
day 1 ... A A A B B ...
day 2 ... A A B B B ...
day 3 ... A A A A B ...
day 4 ... A A B B B ...
day 5 ... A B B B B ...

Table V. Periodic Behavior Summarized over Movement
in Table IV

... 5:00 6:00 7:00 8:00 9:00 ...
A ... 1.0 0.8 0.4 0.2 0.0 ...
B ... 0.0 0.2 0.6 0.8 1.0 ...

Table VI. Frequent Periodic Patterns Mined from Movement
Sequence in Table IV with min sup = 3

... 5:00 6:00 7:00 8:00 9:00 ... support

... A A ∗ B B ... 3

... A ∗ ∗ B B ... 4

... A A ∗ ∗ B ... 4

that at 5:00, it has 100% probability to be at nest, and at 6:00, the probability drops to
80%. Then, at 7:00, it only has 20% probability to be at the nest. Therefore, it indicates
that the bird flies out of the nest around 6:00 to 7:00. However, there could be multi-
ple frequent periodic patterns. Table VI shows three frequent periodic patterns. While
these patterns are frequently repeated regular movement fractions, we can hardly get
an overall summarization over the movement. Therefore, periodic behaviors should be
more practical in real applications.

6.1.2. Application to Movement Prediction. The prediction for future movement is useful
to better track and protect the animals. Jeung et al. [2008a] propose a method to
predict future locations based on periodic patterns. To estimate an object’s future lo-
cations, it combines periodic pattern information as well as existing motion functions
using the object’s recent movements. If it is to predict location for near time, such as
the next minute, the method assigns more weight on motion functions for prediction.
If the query time is distant time, such as the next day or next month, the method
uses periodic patterns for prediction. Since this hybrid prediction method is based on
frequent periodic patterns using the method from Mamoulis et al. [2004], it needs
to choose one pattern from hundreds of patterns, which is the major challenge for
prediction.

Instead of using frequent periodic patterns for prediction, we believe it is better to
use periodic behaviors for prediction. Because the behaviors give a statistical summa-
rization over the movement, they will give a better probability estimation for future
location prediction. The prediction should be carried out in two steps. First, we need
to decide which periodic behavior that recent movement belongs to. For example, there
could be several daily periodic behaviors in different locations. We can take recent sev-
eral days to see which behavior they are most similar to based on the KL-divergence
measure. The smaller KL-divergence value between day d and behavior P means that
day d is more likely to be generated from behavior P. We use the the behavior that has
the smallest KL-divergence value with recent days. Next, based on this behavior, we
can easily predict the future movement for the query time t. Since a behavior itself is a
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Fig. 17. Loss of interesting moving object clusters in the definition of moving cluster, flock, and convoy.

probability matrix, we can directly output the reference spots and their corresponding
probability for query time t.

6.2. Swarm Pattern and its Extension

6.2.1. Swarm, Flock and Convoy Pattern. There have been many recent studies on min-
ing moving object clusters. Flock is first introduced in Laube and Imfeld [2002] and
further studied in Gudmundsson et al. [2004], Gudmundsson and van Kreveld [2006],
and Al-Naymat et al. [2007]. Flock is defined as a group of moving objects moving in
a disc of a fixed size for k consecutive timestamps. Another similar definition, moving
cluster [Kalnis et al. 2005], tries to find a group of moving objects which have consid-
erable portion of overlap at any two consecutive timestamps. A recent study by [Jeung
et al. 2008b, 2008c] proposes convoy, an extension of flock, where spatial clustering is
based on density. The common part of such patterns is that they require the group of
moving objects to be together for at least k consecutive timestamps, which might not be
practical in the real cases. For example, if we set k = 3 in Figure 17, no moving object
cluster can be found. But intuitively, these four objects travel together even though
some objects temporarily leave the cluster at some snapshots. If we relax the consec-
utive time constraint and still set k = 3, o1, o3 and o4 actually form a moving object
cluster. In other words, enforcing the consecutive time constraint may result in the loss
of interesting moving object clusters.

6.2.2. Follower/Leadership Pattern Mining with Time Constraint Relaxed. It is interesting to
see whether there is a leader in a herd of animals. The leader should sometimes lead
the movement of the herd when they are moving. In Gudmundsson et al. [2004], the
authors extend the flock pattern mining method to leadership mining. They give an
additional parameter τ that prescribes during how many timesteps the leader was
already moving in the specified direction. However, even if a moving object is leading
a group of objects, it may not be leading the group for consecutively long times. It
could move ahead for some time and join the group for some time. Therefore, it is also
necessary to relax the consecutive time constraint.

Similarly, we can extend our swarm pattern mining method to leadership mining
with a relaxed temporal constraint. With the parameter τ , we know that the object
is leading τ timestamps ahead.Assume o is leading the herd. It should form a cluster
with other objects if shifting its locations τ timestamps behind. After shifting the
movement sequence of object o, we then do clustering at each timestamp. Here, we are
only interested in those objects in the same cluster as o for each timestamp. Now, with
a set of clusters in each timestamp, we can use our swarm pattern mining method to
find those swarms. If object set O is a swarm, it means that object o is leading the
group O for those timestamps.

7. CONCLUSION

In this article, we describe a MoveMine system that provides data mining functions
to analyze moving object data for discovery of animal movement patterns. The system
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embeds mainly four data mining functions, including periodic behavior mining, swarm
pattern mining, trajectory clustering, and trajectory outlier detection. We test the
system on various real animal movement datasets obtained from MoveBank.org and
the results are visualized in Google Map and Google Earth.

Specifically, we introduce two interesting object pattern mining functions that are
newly developed: periodic behavior mining and swarm pattern mining. In periodic be-
havior mining function, we propose a two-stage algorithm, Periodica. In the first stage,
periods are detected through reference spots using Fourier transform and autocorre-
lation. In the second stage, periodic behaviors are statistically summarized using a
hierarchical clustering method. In swarm pattern mining, the concept of swarm is dif-
ferent from the previous work and it enables the discovery of interesting moving object
clusters with the temporal constraint relaxed. The ObjectGrowth method is proposed to
efficiently discover closed swarms.

In experiments, we study these two functions in the MoveMine system. Furthermore,
we conduct experiments on additional synthetic datasets to test the effectiveness and
effiency of our methods. Experimental results demonstrate that our MoveMine system
should benefit people to carry biological studies on the animal movement data. And
such discoveries should improve the understanding of our ecosystem.
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