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Abstract—Predicting revisit intention is very important for
the retail industry. Converting first-time visitors to repeating
customers is of prime importance for high profitability. However,
revisit analyses for offline retail businesses have been conducted
on a small scale in previous studies, mainly because their
methodologies have mostly relied on manually collected data.
With the help of noninvasive monitoring, analyzing a customer’s
behavior inside stores has become possible, and revisit statistics
are available from the large portion of customers who turn on
their Wi-Fi or Bluetooth devices. Using Wi-Fi fingerprinting data
from ZOYI, we propose a systematic framework to predict the
revisit intention of customers using only signals received from
their mobile devices. Using data collected from seven flagship
stores in downtown Seoul, we achieved 67–80% prediction
accuracy for all customers and 64–72% prediction accuracy for
first-time visitors. The performance improvement by considering
customer mobility was 4.7–24.3%. Our framework showed a
feasibility to predict revisits using customer mobility from Wi-
Fi signals, that have not been considered in previous marketing
studies. Toward this goal, we examine the effect of data collection
period on the prediction performance and present the robustness
of our model on missing customers. Finally, we discuss the
difficulties of securing prediction accuracy with the features that
look promising but turn out to be unsatisfactory.

I. INTRODUCTION

How can we detect a customer who is willing to visit a

store again, without performing extensive surveys? Is it really

possible to predict a customer’s intention to revisit the store

without knowing their purchase history, store satisfaction, age,

or even their residence location? In this study, we introduce a

revisit prediction framework using only Wi-Fi signals collected

by in-store sensors.

By targeting the potential loyal customers who are likely to

revisit, merchants can considerably save promotion cost and

enhance return on investment [1]. Many studies in recent years

have focused on online stores and online text reviews with the

help of a data provider [2], [3]. In contrast, the analysis of

revisit intention in the offline environment has not advanced

significantly over the last few decades. The main reason for

this lack of progress lies in the difficulties of collecting large-

scale data that is closely related to key attributes of revisiting,

such as customer satisfaction with products, service quality,

atmosphere, purchase history, and personal profiles [3], [4].

The first three attributes are subjective information that is

difficult to capture in the offline environment, and the last two

attributes are considered as confidential corporate information

∗ Jae-Gil Lee is the corresponding author.

that is not easily accessible. Owing to these limitations, re-

search on customer revisits in offline stores has been conducted

through surveys. These studies help us gain an understanding

of underlying hypotheses that affect customer satisfaction.

However, their findings cannot be easily generalized because

of a small sample size.

Recently, RFID [5], [6], Bluetooth [7], or Wi-Fi finger-

printing [8] enable us to collect high-frequency signal data

without installing any applications on customer devices [9],

[10]. These signals can be converted to fine-grained mobility

data. Using such data, noninvasive monitoring of visitors has

been carried out in different settings, such as in museums

[7] and supermarkets [11], providing empirical findings of

customer behavior. Nowadays, collecting data in a certain

physical boundary is called as geofencing, and its market size

is accounted for USD 8 billion in 2014 and is expected to

reach 40 billion by 2019 [12]. Companies such as ZOYI,

VCA, RetailNext, Euclid, ShopperTrak, and Purple installed

their own sensors to geotrack real-time mobility patterns of

customers in their clients’ stores. Their propritary solutions

provide visitor monitoring results, such as funnel or hot-spot

analysis results displayed through a dashboard.

This study moves one step forward, from visitor monitoring

to customer revisit prediction. It is known that motion patterns

unconsciously reflect consumer’s interest in and satisfaction

with the store [13]. Therefore, our key task is to find patterns

that affect a customer’s revisit. We systemically design features

to summarize each visit as follows. First, we interpret the

device location at various semantic levels to understand user

behaviors. Second, we utilize weak signals usually captured

outside a store to expand our trajectory to the widest possible

range. Using this information, we are able to track a customer’s

behavior outside the store even if they did not enter the store.

We use the customer mobility data1 obtained from seven

flagship stores in Seoul. The number of unique customers col-

lected in the seven stores reaches 3.75 million. The data is very

attractive because we can capture approximately 20–30%2 of

customer mobility without any intervention. Furthermore, the

data collection period is 1–2 years, which is long enough to

study revisit behaviors.

Figure 1 illustrates the overall procedure of our prediction

framework. If a customer comes into a store, the framework

1For future researchers, we are negotiating to release sampled datasets with
our code at https://github.com/kaist-dmlab/revisit.

2The proportion of users in their twenties who keep their Wi-Fi on is 29.2%,
according to a Korea Telecom survey [14].
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Figure 1: Revisit prediction framework architecture. Figure 2: Revisit statistics of store E GN.

detects his/her Wi-Fi signals, and through the data preprocess-

ing described in Section II-B, transforms the signals to a visit

and an occurrence. From the customer’s visit and previous

occurrences, extensive features are derived to describe his/her

motion patterns, as discussed in Section IV. Finally, we can

predict his/her revisit behavior, using a trained model.

Our experiments demonstrate that our revisit prediction

framework achieves up to 80% accuracy of the binary revisit

classification of all trajectories. Additionally, it successfully

predicts the revisit of first-time visitors by up to 72% accuracy.

In the case of actual apparel stores, it is very useful to predict

the revisits of first-time customers, because they account

for more than 70% of all visitors. Most importantly, our

80% accuracy is achieved by features, all derived from Wi-

Fi signals with minimal external information(dates of public

holidays, clearance sales). Thus, we expect that the prediction

power will rise significantly by adding private data such as

personal profiles and purchasing patterns.

Figure 2 illustrates the observed revisit statistics during the

data collection period in store E GN. The black line denotes

the number of observations |vk| of kth visits (vk), and the gray

line denotes the average revisit rate E[RVbin(vk)] of all vk’s.

The fact that the |v5| is 100 times less than |v1| implies that it is

very difficult to retain first-time visitors as regular customers.

It also describes how valuable it is to raise the revisit rate of

first-time visitors that account for 70% of all customers.

As our additional contributions, we demonstrate the ef-

fectiveness of using customer mobility in comparison with

baseline models considering visit distribution and temporal

information. We also report the predictive power of each

feature group and semantic level to show whether or not the

trajectory abstraction boosts the predictability. We examine

how the collection period and the volume of data affect

performance. The final goal of this paper is to share the

unexpected challenges faced when two groups of data show

inherent differences in a statistical sense.

II. DATA DESCRIPTION

A. Data Collection Stores

We collected data from seven flagship stores located in the

center of Seoul. These stores are known to be the busiest stores

in Korea. Because of their location and size, these stores have

up to 10,000 daily visitors. Table I presents the statistics of

the datasets.

B. Preprocessing to Generate Trajectories

1) Signal to Session Conversion: The installed sensors

enable us to collect Wi-Fi signals from any device that turns

on its Wi-Fi. A single Wi-Fi signal includes an anonymized

device ID, sensor ID, timestamp, and its RSSI level. Signals

are collected continuously from each device at fairly short

intervals, which are less than 1 s. To understand customer

mobility, we carry out a conversion process to remove redun-

dant signals and combine them into Wi-Fi session logs. Each

session includes a device ID, area ID, and dwell time, and it

becomes an element of a semantic trajectory. Predefined RSSI

thresholds are utilized for signal-to-session conversion. These

values guarantee that the device is in the vicinity of a sensor.

The logic of this conversion is simple. For instance, a new

session is created when a sufficiently strong RSSI is received

for the first time. The session continues if the sensor receives

consecutive strong signals, and it ends if the sensor no longer

receives strong signals. The session also ends if another sensor

receives a strong RSSI from that device.

2) Location Semantics: It is also possible to detect the

semantic location of a customer by taking advantage of the

semantic coherency of contiguous sensors. For example, we

can identify if the customer is looking at daily cosmetics

or she is in a fitting room. Additionally, we can describe

a customer’s location to floor-level or gender-level semantic

areas. Moreover, we generate in/out-level areas by examining

whether the customer is inside the store, nearby the store

(up to 5m), or far away from the store (up to 30m). This

becomes possible by controlling multiple RSSI thresholds to

activate detection with weaker signals. Therefore, an entity

of Wi-Fi session data encompasses a customer’s dwell time

not only in the area corresponding to sensors but also in

the wider semantic areas. By integrating the Wi-Fi sessions

with different semantics, we construct a multilevel semantic

trajectory to describe each visit.

III. PROBLEM DEFINITION

In this section, we formally define the main concepts

introduced in our paper. First, we define a multilevel semantic

trajectory (T) that expresses a customer’s motion pattern, and

define visit (v) and occurrence (o) using T. Next, we define

the revisit interval (RIdays) and the revisit intention (RIbin),

which are the labels in our prediction model. Finally, we

introduce the revisit prediction problem.
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Table I: Statistics of the datasets.

Store ID A GN A MD E GN E SC L GA L MD O MD

Location Gangnam Myeong-dong Gangnam Sinchon Garosu-gil Myeong-dong Myeong-dong
Collection length 222 days 220 days 300 days 373 days 990 days 747 days 698 days
# of sensors 16 27 40 22 14 11 27

# of total signals 165,443,933 890,267,554 939,815,485 632,106,890 1,935,362,316 2,818,001,166 6,499,265,088
Signal data size 15 GB 77 GB 148 GB 99 GB 164 GB 242 GB 567 GB
# of total sessions 19,937,461 33,862,373 81,449,603 34,131,034 40,282,894 74,324,676 90,713,930
# of indoor sessions ≥ 5 s 636,843 3,250,072 1,353,709 1,921,635 5,461,060 11,065,561 15,581,820

# of visits ≥ 60 s 112,672 327,940 183,246 270,366 1,062,226 1,718,359 2,008,384
# of unique visitors ≥ 60 s 100,741 232,051 147,096 186,617 846,487 1,171,583 1,065,803
Avg. revisit rate 11.73 % 31.99 % 21.18 % 36.55 % 21.22 % 32.98 % 48.73 %

A. Key Terms and Concepts

Definition 1: A semantic trajectory T is a structured tra-

jectory of size n (n ≥ 1) in which the spatial data (the

coordinates) are replaced by semantic areas [15], that is,

T = {s1, . . . , sn}, where each element ( = a session) is defined

by si = (spi, t
(spi)
in , t

(spi)
out ). Here, spi represents the semantic

area, t
(spi)
in is a timestamp for entering spi, and t

(spi)
out is a

timestamp for leaving spi. �
If a session length t

(spi)
out −t

(spi)
in is shorter than 5 s considering

walking speed and the distance between adjacent sensors, a

customer is likely to pass that area without consideration, and

thus, we delete the element from the trajectory.

Definition 2: A multilevel semantic trajectory T =

{T1, . . . , Tl} is a set of semantic trajectories with l (l ≥ 1) dif-

ferent semantic levels. Each semantic trajectory Ti represents

a customer’s trajectory using semantic areas of level i. �
For our indoor environment, we utilized semantic levels inside

the store, except for the highest level l indicating the in/out

level. The total dwell time of Tl is always longer than

T1, . . . , Tl−1, because the in/out mobility utilizes weak signals

that can be captured for a longer period than the strong signals

used for indoor behavior.

Definition 3: A visit v is a unit action of entering the store.

vk(c, [ts, te],T) is a kth visit by customer c, who is sensed

from ts to te, of which the motion pattern is described with a

multilevel semantic trajectory T. �
We consider only the visits that are long enough to represent

meaningful behavior. For the sensor-level trajectory T1, the

total dwell time te − ts should be greater than 1min, because

it takes less than 1min to go through the store. The data

preprocessing thresholds are empirically configured depending

on the size of a store and the number of sensors.

Definition 4: An occurrence o is a special case of a visit that

represents a unit action of lingering around the store without

entrance. ok(c, [ts, te],T) is a kth occurrence by customer c,

who is sensed from ts to te, of which the mobility is only

captured in the outdoor area with T = {∅, . . . , ∅, Tl}. �
Although we did not have any personal information such as the

customer’s residence, we could measure his/her accessibility

to the store through the occurrence. For each visit, we use a

set of previous occurrences as a reference to generate store

accessibility features [SA], which will be explained later.

B. Prediction Objectives

If a customer revisits the store after d days, the previous

visit v of the customer has a d-day revisit interval, denoted

by RVdays(v) = d, and a positive revisit intention, denoted by

RVbin(v) = 1, as in Definition 5.

Definition 5: If two consecutive visits of customer ci

vk = vk(ci, [tk,s, tk,e],Tk)

vk+1 = vk+1(ci, [tk+1,s, tk+1,e],Tk+1)

meet the condition tk,e < tk+1,s, the revisit interval
RVdays(vk) and the revisit intention RVbin(vk) of the former

visit vk are as follows:

RVdays(vk) = # days of tk+1,s − tk,e

RVbin(vk) = 1

If a visit vk does not have any following revisit, then

RVdays(vk) = ∞
RVbin(vk) = 0 �

C. Predictive Analytics

Customer Revisit Prediction: Given a set of visits

Vtrain = {v1, . . . , vn} with known revisit intentions RVbin(vi)
and revisit intervals RVdays(vi) (vi ∈ Vtrain), build a clas-

sifier C that predicts unknown revisit intention RVbin(vnew)
and revisit interval RVdays(vnew) for a new visit vnew.

IV. FEATURE ENGINEERING

To have a multiperspective view of customer movements,

we construct each visit as a five-level semantic trajectory, T =
{T1, T2, T3, T4, T5}, where the levels correspond to sensor,

category, floor, gender, and in/out, respectively. We expect

the pattern captured using multiple levels can be helpful in

predicting customer revisits. Thus, some features were created

for each semantic level.

Table II gives a summary of the features in our framework,

which are self-explanatory. The first column describe data

sources used to extract features, leading to ten different feature

groups. The first six feature groups and [TV] are generated

from the visit itself. [UE], [SA], and [GM] are generated using

certain references: [UE] uses sales and holiday information
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Table II: Description of the representative features according to the data sources and feature groups. The �indicates the best semantic level
to describe each feature. For features with multiple �, the values of the features at each level are different, thus having different meanings.

Data sources Feature groups
Twenty representative features
(Among 866 features of store E GN)

Semantic level of features

Sensor Category Floor Gender In/Out None

Moving pattern of
the visit

Overall statistics
[OS] (IV-A1)

f1 = Total dwell time �
f2 = Trajectory length � � � �
f3 = Skewness of dwell time of each area � � �

Travel Distance/
Speed/Acceleration
[TS] (IV-A2)

f4 = Total distance traveled inside the store �
f5 = Speed based on transition time � � � �
f6 = First-k HWT coefficients of acceleration � � � �

Area preference
[AP] (IV-A3)

f7 = Coherency of dwell time for each level � � �
f8 = Top-k-area dwell time � � � �

Entrance and Exit
pattern [EE]

f9 = Exit gate �
f10 = Number of previous re-entry on that day �

Heuristics [HR] f11 = Wears clothes but does not buy �
Statistics of each
area [ST]

f12 = Number of time sensed in the area � � � �
f13 = Stdev of dwell time for the area � � � �

Temporal
information of the
visit

Time of visit [TV] f14 = Day of the week �
Upcoming events
[UE] (IV-A8)

f15 = Remaining day until the next sale �
f16 = Number of holidays for next 30 days �

Occurrences
before the visit

Store accessibility
[SA] (IV-A9)

f17 = Number of days since the last access �
f18 = Average interarrival time �

Simultaneous visits
Group movement
[GM] (IV-A10)

f19 = Presence of companions �
f20 = Number of companions �

for the near future, [SA] uses the occurrences of the customer

before making this visit, and [GM] considers other visits at

the same time.

For seven stores, the total number of generated features

varies from 220 to 866 depending on the number of areas and

the number of semantic levels used. T2, T3, T4–level features

are generated only for two stores: E GN and E SC, where we

continuously tracked their floor plans during data collection

periods. In Table II, we introduce 20 representative features

to best describe the characteristic of each feature group. On

the right side of the table, the corresponding semantic level

for each feature is marked.

Figure 3 and Figure 4 display meaningful relationships

between the feature values of f1, f7, f9, f15, and f17 with

the average revisit intention rate E[RVbin(v)]. By dividing

total visits into 20 equal bins according to feature values, we

can identify the association between feature values and revisit

rates without being affected by outliers.

A. Feature Descriptions

1) Overall Statistics [OS]: OS features represent the

high-level view of a customer’s indoor movement patterns,

and therefore, the predictive power is relatively strong. By

considering the trajectory as a whole, we can extract features

such as total dwell time (f1), trajectory length (f2), and

average frequency of each area. We also apply skewness (f3)

or kurtosis to measure the asymmetric or fat-tail behavior of

the dwell-time distribution of each area.

2) Travel Distance, Speed, and Acceleration [TS]: TS fea-

tures are in-depth information that needs to be explored [16].

To approximate the physical distance (f4) traveled by the

customer, we created a network based on the physical connec-

tivity between areas. We used the transition time to obtain the

shopping speed (f5), and we modeled the acceleration from

the speed variation between consecutive areas. A time series

analysis using the Haar Wavelet Transform (HWT) [17] was

performed, as well as statistical analysis, to determine how

the customer’s interests changed with time. We included the

first-16 HWT coefficients (f6) in our feature set.

3) Area Preference [AP]: With AP features, it is possible

to identify the difference between a customer viewing a

specific area with high concentration and a person shopping

lightly throughout the store. The area name and dwell

time (f8), and its proportion over the total dwell time of the

top-3 areas at each level are included in the basic features.

The coherency of each level (f7) determines the consistency

of the customer’s behavior. The definition of the coherency

metric is the proportion of time spent in the longest staying

area. This metric is effective to capture regular customers who

know the store’s layout and go directly to the desired area.

4) Entrance and Exit pattern [EE]: Interestingly, customers

leaving through the back door (f9) revisited 13.6% more than
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Figure 3: The relationship between the selected features and RVbin
in store E SC (E[RVbin(v) (v ∈ Vall)] = 0.3616). Each marker
point represents the average revisit intention E[RVbin(v)] (v ∈ Vb)
of the set Vb of visits obtained by equal-frequency-binning the entire
data according to feature values. Indoor moving pattern features f1,
f7, and f9 shows at most 40 % deviation of E[RVbin(v)] according
to the feature value. The store accessibility feature f17 shows 325 %
deviation, which is the highest among the selected features. For f9,
the group of customers who are most likely to use the back door are
located on the left side of the x-axis.

customers leaving through the front door, according to our

data. Therefore, we estimated the customers’ entrance and exit

patterns from the sensors nearby the front and back doors. We

expected that customers familiar with the store might have

used a more convenient door.

5) Heuristics [HR]: We collected ideas about what kinds

of patterns are likely to appear from people who are willing

to revisit. In general, people commented that the dwell-time in

the fitting room (FR) and the checkout counter (CS) reflected

the customers’ interest and their purchasing pattern. As we do

not know whether the customer actually bought the item or

tried it in FR, the time spent in those areas was used to make

inferences. Here are two representative heuristics anticipating

the revisit of customers for future purchase.

• If a customer wears clothes in the FR without purchase (≤
1min in the CS): f11 = 1, for all other cases: f11 = 0.

• If a customer stays in the store much longer (= 10min) than

average visitors, without purchase: f = 1, if not: f = 0.

6) Statistics of Each Area [ST]: If a certain semantic area

is highly relevant to revisit, the statistics from that area have

higher predictability. For all semantic areas, we created six

features including the number of times it was sensed (f12), the

percentage of the total time spent in the area (that is used for

developing the coherency feature), and the standard deviation

of the times sensed in the area (f13).
7) Time of Visit [TV]: The temporal features include the

time of visit such as hour of the day and day of the week (f14)
as basic features. The values of the features described above

are ordinal and thus were transformed into multiple binaries

by one-hot encoding. The value of a temporal feature is

determined by the entrance time.

(a) On first-time visitors (v1). (b) On all visitors.

Figure 4: Key factors of v1’s revisit: discount and seasonality.
Discount-sensitive: A set Vb of customers who visited between
30–45 days before a clearance sale showed a high E[RVbin(v)]
(v ∈ Vb) compared to other customers; this difference was more
apparent in first-time visitors than all visitors.
Seasonal-sensitive: Another peak of E[RVbin(v)] appeared on the
set of customers who made a visit between 90–105 days before
the sale. It described the seasonal revisit, and it was also more
noticeable to first-time visitors than all visitors.

8) Upcoming Events [UE]: Customers are more likely to

visit a store in the period of a clearance sale. However,

they are less likely to visit the store in the holiday seasons

since they are outside the city. By combining simple extrinsic

information, the temporal features, particularly [UE], becomes

the second strongest predictive feature groups. It contains six

features, including a number of days left for the next clearance

sale (f15) and a number of holidays for next 30 days (f16),
as numeric features.

9) Store Accessibility [SA]: When installing sensors inside

the store, could you imagine that the weak noise collected

outside the store would provide the most important clue to

predict revisit? Surprisingly, the revisit predictability increased

dramatically when we included SA features using weak sig-

nals, which could have been overlooked as mere noises. The

following settings are expected to be applicable to many

studies when conducting research using in-store signals that

do not contain customer address information.

The features are designed to capture various aspects from

interarrival times (IATs). We utilized two additional outdoor

areas nearby the store—5m and 30m zone—to detect the cus-

tomer occurrences. Considering a customer’s arrival process to

5m zone, let us denote the time of the first occurrence by T1.

For k > 1, let Tk denote the elapsed time between k −1th and

the kth event. We call the sequence {Tk, k = 1, 2, ..., } as the

sequence of IATs. Considering the target visit as nth event of

the arrival process, we use the following features:

• n − 1: Number of occurrences before the visit;

• Tn: Number of days from the last occurrence (f17);
• 1n>1: Existence of having any occurrence before the visit;

• μ =
∑n

k=2 Tk/(n − 1): Average IAT (f18);
• σ =

√∑n
k=2(Tk − μ)2/(n − 1): SD of IATs;

In addition to these five features from Tk, we added the

average sensed time for previous occurrences.

10) Group Movement [GM]: Unlike previous features, GM

features were extracted by considering multiple trajectories.

This is a representative feature that can only be captured

by analyzing surrounding trajectories that happened simul-
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taneously with the main trajectory. In our feature extraction

framework, we considered the presence of companions (f19)
and the number of companions (f20). One of the biggest

characteristics of judging whether or not to be a companion is

to enter the store at the same time. Based on the information

obtained through the field study, we considered that two

visitors are in a group when their entrance time and exit time

are both within 30 s.

B. Unused Features

1) Sequential Patterns: Sequential patterns [18], [19] were

not effective for the revisit prediction task on our datasets, so

we omitted them from the final framework. To briefly describe

our approach, we retrieved top-k discriminative sequential

patterns by the information gain and generated k features.

Each feature fi(v) denotes the number of times a trajectory

of visit v contains ith patterns. We considered diverse levels

of sequential patterns, as in Table III, but the result was not

satisfactory. Despite that it was expensive to generate the

features, their information gains were typically low.

Table III: Types of sequential patterns.

Pattern type Description

A → B → C
A sequential pattern having an order, where the
following element appears immediately after the
previous element.

A
∗−→ B

∗−→ C
A partial sequential pattern [19], an arrow A

∗−→
B denotes that there might exist additional ele-
ments between A and B.

Ashort
∗−→ Blong∗−→ Cshort

A partial sequential pattern which has a time
constraint for the dwell time of each element.

2) Past Indoor Information: We excluded the features that

average up the customer’s previous indoor mobility statistics,

as well as those that represent the amount of changes from past

statistics. By nature, the number of features becomes doubled

per revisit by considering that information. However, they were

not a strong indicator of revisits unlike [SA] and thus were

removed.

3) Features That May Interfere with Fair Evaluation: Since

most customers have a small number of visits, we developed

a general model that considers the mobility of the entire set

of customers. According to this principle, we considered each

visit separately, by removing customer identifiers. In this way,

we can also ensure that our model is robust to general cross-

validation settings. We excluded the visit date to avoid a biased

evaluation that favors the customers who visited in an earlier

period. We also ignored the explicit visit count information.

V. EVALUATION RESULTS

A. Settings

1) Prediction Tasks: We designed prediction tasks to ex-

plore customers’ revisit behaviors. The first task is a binary

classification task to predict customers’ revisit intention RVbin.

The second task is a regression task to predict the revisit

interval RVdays between two consecutive visits. For each task,

we conducted experiments on two different data subsets. First,

we see the performance of our model on the entire customer

dataset. Second, we used a dataset consisting of only the first-

time visitors to show that our prediction framework is effective

in determining the willingness of first-time visitors to revisit.

2) Scoring Metrics: We used two scoring metrics: accuracy
and root mean squared error (RMSE) for the classification and

regression tasks, respectively.

• The accuracy is the ratio of the number of correct predictions

to that of all predictions. We used it for the classification

task because it is considered to be the most intuitive metric

for store managers and practitioners. To fairly compare the

model performance in seven imbalanced datasets with differ-

ent revisit rates, we downsampled non-revisited customers

for each dataset. In this way, we designed the task as a

binary classification on balanced classes having 50% as a

random baseline. To mitigate the risk of the sampling bias,

we prepared ten different downsampled train/test sets with

random seeds. The averages of ten executions were reported

in the paper.

• The RMSE is measured between the actual interval and the

predicted interval. To make the RMSE values of seven stores

with different data collection periods comparable, a RMSE

value was normalized by the length T of the data collection

period. Because we cannot calculate the revisit interval for

the last visit, we excluded the customers’ last visits for the

regression task.

3) Dividing Data: Train and test data were divided through

three settings:

• S1: 5-fold CV by dividing customers, where each cus-

tomer data can only be included in a single fold.

• S2: 5-fold CV by dividing visits3, where each visit is

handled independently.

• S3: First 50% visits as the training data, and other 50%
as the testing data.

The accuracy difference between the S1 and S2 was insignifi-

cant to the fourth decimal place. By S3, there was an accuracy

loss of about 2.5% on average compared to S1 and S2, due to

floor plan changes of the stores and inaccurate labels caused

by truncation in time (§ V-C1). Because of the page limit, we

report the main results using the configuration S1.

4) Classifier: All results described in this section were

obtained using Python API of the XGBoost [20] library

that implements the gradient boosted tree [21] framework,

which gave the best performance among various classifiers,

including AdaBoost, random forest, and logistic regression

implemented in the Python Scikit-learn [22] library. We also

tried variants of RNN models using PyTorch [23], but the

accuracy was lower than that of XGBoost and the running

time took several magnitudes longer. We used all features

for training and testing the model, since using all features

gives the best performance and the boosting tree classifier is

robust to potential correlations between features. The elapsed

time for each fold with 200,000 visits and 660 features took

3As a result of § IV-B3, our model is considered to be safe to perform CV.
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no longer than 1min in a single machine (Intel i7-6700 with

16GB RAM, without GPU).

B. Results

1) Overall Results: Table IV shows the overall accuracy

and RMSE. First, the prediction accuracy for first-time visitors

is 67% averaged over seven stores. By only using mobility

data captured by in-store sensors, two out of three customer’s

revisit is predictable without having any historical data in the

store. Second, the average prediction accuracy increases to

74% by considering all customers. Third, the stores with a

long data collection period and abundant user logs generally

show high performance, while this trend might not happen

depending on the characteristics of the stores.

Table IV: Performance of classification and regression tasks.

Store
ID

Period
(days)

#features Customer
type

# data (# revisitors) Accuracy RMSE

A GN 222 256
First 99,497 (9,514) 0.6336 0.2132

All 112,672 (13,222) 0.6689 0.2000

A MD 220 328
First 223,103 (47,917) 0.6930 0.1865

All 327,940 (104,913) 0.7412 0.1622

E GN 300 866
First 144,610 (21,701) 0.6663 0.1862

All 183,246 (38,817) 0.7050 0.1627

E SC 373 663
First 172,551 (41,036) 0.6818 0.1824

All 270,366 (98,818) 0.7288 0.1475

L GA 990 244
First 838,241 (107,925) 0.7173 0.1403

All 1,062,226 (225,409) 0.7789 0.1244

L MD 747 220
First 1,154,486 (197,476) 0.6799 0.1416

All 1,718,359 (566,701) 0.7991 0.1146

O MD 698 316
First 1,033,253 (294,949) 0.6645 0.1311

All 2,008,384 (978,699) 0.7599 0.1028

2) Predictive Power of Feature Groups: Figure 5(a) inves-

tigates the predictive power of each group of features in store

E SC. Each bar corresponds to the prediction results using the

features of only a specific group. The labels of the x-axis are

the abbreviations of the feature groups categorized in Table II.

For the convenience of comparison, the leftmost bar on the

figure represents the results when all features in Table IV

are used. It was observed that the store accessibility [SA]
features have the strongest predictive power, especially for

the prediction with all visitors, followed by the upcoming
event [UE] features for the first-time visitors.

3) Predictive Power of Semantic Levels: As opposed to our

intuition, a performance of semantic levels inside the store

did not boost the performance that much. As in Figure 5(b),

the performance of the features generated from the category

level (T2) only beats the features from the sensor level (T1).

Besides, the semantic trajectories generated from the floor-

level (T3) and the gender level (T4) were not effective to predict

customer revisit in the store E SC. We can conclude that

finding effective trajectory abstraction is difficult even if the

hierarchical information is provided.

4) Performance Improvement by Analyzing Trajectories:
To measure the performance improvement using our features,

we developed two different baselines for comparison. The first

baseline is a theoretical lower bound of the prediction accuracy

(a) On feature groups. (b) On semantic levels.

Figure 5: Performance comparison on feature groups and semantic
levels (store E SC).

obtained from revisit statistics, shown in Figure 2. Since

we fully ignored any other information here, the prediction

accuracy with this limited information must be lower than

that of using full trajectories. The procedure of deriving lower

bounds is given in Appendix A.

The second baseline is a model to which the visit date is

added. Since our task utilizes finite time-series datasets with

time-dependent objectives, the earlier collected logs tend to

have a relatively high revisit rate. Therefore, by including a

visit date as an additional feature, the baseline accuracy im-

proves naturally. If there existed infinite data, the performance

increase by this factor would disappear. The benefit of using

customer mobility can be considered as the gap between our

final model and the second baseline.

Figure 6 reports the accuracy of our model4 against two

baselines. We note that our final model is more effective

than the second baseline by 4.7–11.6% in terms of accuracy.

Among the first-time visitors, the effectiveness of trajectory

analysis increases, showing a performance improvement of

8.0–24.3%.

(a) On all visitors. (b) On first-time visitors.

Figure 6: Effectiveness of analyzing customer trajectories.

C. Discussions

1) Importance of Data Collection Period: We are wonder-

ing how much the model’s performance varies depending on

the amount of data. Figure 7(a) shows that the overall pre-

diction accuracy increases as the length of the data collection

period increases. The performance rapidly increases over the

first few months, and then the increment is getting smaller. The

main reason for the poor performance in the first few months is

the lack of the information on revisiting customers. Therefore,

4For this experiment, we included visit count and date to our feature set, so
the overall accuracy is slightly higher than the values reported from Table IV.
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the labels in the training data could be inaccurate if we

collected the information for an insufficient period. To confirm

our conjecture, we also examined the proportion of customers’

revisit intention as the data collection progressed, as in Fig-

ure 7(c). The proportion, E[RVbin(v)], indeed increased as the

data collection period increased. However, prediction accuracy

on first-time visitors did not always increase. We notice that

average revisit rate also decreases for those cases, i.e., O MD

and L MD, which implies that recently visited customers

do not tend to revisit the store. Overall, with longer data

collection period, performance improvement occurs by having

more positive cases for regular customers.
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(a) On all visitors, accuracy in-
creases as data becomes longer.
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(b) On first-time visitors, accuracy
does not increase after few months.
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(c) On all visitors, average revisit
rates keep increasing for all cases.
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(d) On first-time visitors, average re-
visit rates decrease in some cases.

Figure 7: Impact of the data collection period.
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(b) Group movement (px = 0.392, py = 0.56).

Figure 8: Missing behaviors in noninvasively collected data. (a)
Customers’ revisits were untraceable if they did not have Wi-Fi turned
on. (b) The actual group movement ratio was 56% instead of 15.6%.
Researchers must not interpret the data as it is, when explaining the
real behavior.

2) Real Behavior and Collected Data—Are They Same?:
Noninvasively collected data is also limited, considering that

not all users turn on Wi-Fi of their mobile device. Since the

4G LTE connection is very fast and ubiquitous in Korea, the

proportion of ‘always-on’ users is just 30% [24]. This limi-

tation implies that the datasets were missing some customer

behaviors in the real world. Figure 8(a) shows untraceable

revisits due to the conditional Wi-Fi usage of the customer, and

Figure 8(b) shows a gap between actual/observed proportion

of group movements caused by low Wi-Fi usage. The reason

for the difference is that both companions must use Wi-Fi to

verify the accompanying records on the data. px denotes the

probability of customers who turn on Wi-Fi on-site (including

‘conditionally-on’ users), and py denotes the actual proportion

of customers in a group of size two. Here we ignore groups

more than two customers, which are not that common. Then

the proportion pyo of group customers observed in the data

can be represented as Eq. (1).

pyo =
Observed(Group)

Observed(Group) +Observed(Individual)

=
py(px)2

py(px)2 + 2pypx(1− px) + (1− py)px
=

pxpy
1 + py − (px)2

(1)

In the future, if customers’ behaviors are more traceable with

additional sensing technologies, we believe that noninvasively
collected data will better reflect actual customer behaviors.

3) Performance on Incomplete Data: Assuming that some

of the customers’ data are completely gone, is the performance

of our model reliable? We confirmed that over 95% of the

performance of our model is maintained with a very small

fraction of the dataset (e.g., 0.5% for L MD). For each store,

we randomly removed the records of a set of customers and

measured the model performance using the remaining data.

Figure 9 shows the averages for 20 different executions. The

accuracy loss of the model was within 3% if 10,000 visits were

secured. This observation can be also interpreted as follows:

• For large-scale mobility data, a comparable prediction

model can be built by using small data subsets.

• On the other hand, we can estimate the prediction per-

formance when all customer data becomes traceable.

• High prediction accuracy of some stores may not be due

to their large number of visitors.
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(a) On all visitors.
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(b) On first-time visitors.

Figure 9: Model robustness on missing customers.

4) Meaningful Insights but Low Predictability: We would

like to point out that securing prediction accuracy can be

difficult although the differences between re-visitors and
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Table V: Statistics of feature values with revisit status, and their final predictability: statistics from the store O MD.
(FV1 = E[FV (v)|RVbin(v) = 1]: Average feature values of revisitors, rpb: Point-biserial correlation)

Feature value difference by revisit status Revisit rate difference by feature values

Feature Name FV1 FV0 diff1 p-value max(RVbin) min(RVbin) diff2 rpb Accuracy

fa: Avg interarrival time (5m) 21.8 days 44.4 days 104.2% 0∗∗∗∗ 0.841 0.358 134.7% -0.207 0.7346
fb: Total dwell time 3211 s 1612 s 99.2% 0∗∗∗∗ 0.721 0.335 115.2% 0.216 0.6005
fc: Percentages of time spent in the
3rd longest area

0.112 0.087 28.5% 0∗∗∗∗ 0.622 0.335 85.8% 0.152 0.6035

fd: Avg dwell time for each area 358 s 348 s 2.7% 0∗∗∗∗ 0.588 0.410 43.5% 0.007 0.5584

Figure 10: Detailed relationship between four features and E[RVbin(v)] mentioned in Table V.

non-revisitors are obvious. Some feature values significantly

differ by the revisit status, each of which should be helpful

to explain the difference between two groups. But from the

perspective of a prediction task, the correlation coefficient

was relatively small, and the prediction accuracy using the

feature was not very high.

In Table V, the relative difference diff1 of feature

values depending on the future revisit status is noticeable

(2.7–104.2%). Besides, the p-value (p < 10−100) from Mann-

Whitney U test shows that the feature values of two groups

are from different distributions. From another perspective, the

relative difference diff2 in the average revisit rate between the

top 5% and the bottom 5% of customers in terms of feature

values also shows clear distinction by 43.5–134.7%.

However, the correlation coefficient and the final prediction

accuracy using the feature are not as impressive as diff1 and

diff2. Practitioners should note that the behavioral difference

between the two groups is obvious and the p-value is high,

but not in terms of the metric of correlation and prediction

accuracy. Also, the feature should not be discarded because

of the low correlation coefficient. If the feature has non-linear

tendency, its predictive power can be strong. The statistics

of fb and fc in Table V confirms our argument. We assert

that our high-quality prediction came from a combination of

various kinds of features which behave differently.

VI. RELATED WORK

Predictive analytics using trajectories. Using trajectories,

next location prediction is the most studied topic in the

computer science community. To predict the next location,

frequent trajectory patterns [25], nonlinear time series analysis

of the arrival and residence time [26], and HMM [27] were

applied. The results support the prediction of the next location

using partial trajectories is feasible, along with the regularity

studies of human mobility [28]–[30]. The main difference

between our study and previous studies is a prediction

objective. We studied the customers’ revisit intentions in

the offline stores using indoor trajectories. Thus, our model

focused on predicting revisits instead of locations. As far as

we know, there are no studies of predicting revisit intention

using trajectories captured by in-store sensors.

Customer behavior in the store. Park et al. [16] examined

the factors of route choice in three clothing outlets by tracking

484 customers. They considered spatial characteristics of the

outlet, types of customers, and their shopping behaviors. In the

grocery store, an RFID-based tracker system with shopping

carts enabled Hui et al. [5] to find that consumers who spent

more time in the grocery store become more purposeful.

Although these studies did not focus on customers’ revisit,

they were valuable resources for us to develop features that

describe customers’ motion patterns.

Indoor analysis in other places. Traditionally, the analysis

of customers’ indoor movement and connections to space has

been conducted in the area of architecture or interior design.

Especially for museums, various movement patterns were

tracked manually [31] to rearrange the exhibits to enhance

the satisfaction of visitors [32]. With the help of noninvasive

monitoring, visitor studies in the museum have come to a new

phase. Yoshimura et al. [7] installed eight beacons in the Lou-

vre Museum and analyzed the most popular paths to mitigate

a micro-congestion inside the museum. By tracking visitors’

movements, the Guggenheim Museum [33] increased cus-

tomers’ engagement by making smarter curatorial decisions.

VII. CONCLUSIONS

Various retail analytics companies have set up sensors

to monitor customer mobility in offline stores. Although it

was difficult to connect with other kinds of data because

of legal issues, we confirmed that customer mobility indeed

involves diverse meanings. Without having access to customer

purchase data or customer profile, we have found that revisit
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intention of customers are predictable by up to 80%, using

only Wi-Fi signals collected by in-store sensors. Toward this

goal, we suggested guidelines for setting the collection period

of indoor data for revisit prediction. We also showed our

model is robust even if a majority of customer data is missing.

Moreover, we demonstrated that significant observations may

be in disagreement with the final predictive power. We expect

that our findings will help data scientists and marketers

from both retail analytics companies and their clients make

important decisions. In the future, we plan to discover

additional aspects of revisits from inter-store mobility with

an advanced model to learn the customer revisit mechanism.

ACKNOWLEDGMENT

This project is funded by Microsoft Research Asia (Mi-

crosoft PO #: 97838317). We appreciate Minseok Kim for

helping surveys on offline stores. We also thank ZOYI for

providing additional datasets for experiments.

REFERENCES

[1] D. Peppers and M. Rogers, Managing customer experience and rela-
tionships. Wiley, 2016.

[2] G. Liu et al., “Repeat buyer prediction for E-Commerce,” in KDD, 2016.
[3] X. Yan, J. Wang, and M. Chau, “Customer revisit intention to restau-

rants: Evidence from online reviews,” Information Systems Frontiers,
vol. 17, pp. 645–657, 2015.

[4] S. Um, K. Chon, and Y. Ro, “Antecedents of revisit intention,” Annals
of Tourism Research, vol. 33, no. 4, pp. 1141–1158, 2006.

[5] S. K. Hui, E. T. Bradlow, and P. S. Fader, “Testing behavioral hypotheses
using an integrated model of grocery store shopping path and purchase
behavior,” Journal of Consumer Research, vol. 36, no. 3, 2009.

[6] A. Syaekhoni, C. Lee, and Y. Kwon, “Analyzing customer behavior from
shopping path data using operation edit distance,” Applied Intelligence,
2016.

[7] Y. Yoshimura, A. Krebs, and C. Ratti, “Noninvasive bluetooth monitor-
ing of visitors’ length of stay at the louvre,” IEEE Pervasive Computing,
vol. 16, no. 2, pp. 26–34, 2017.

[8] M. Tomko, Y. Ren, K. Ong, F. Salim, and M. Sanderson, “Large-scale
indoor movement analysis: the data, context and analytical challenges,”
in GIScience Workshop, 2014.

[9] Y. Ren, M. Tomko, F. D. Salim, K. Ong, and M. Sanderson, “Analyzing
web behavior in indoor retail spaces,” Journal of the Association for
Information Science and Technology, vol. 68, no. 1, pp. 62–76, 2017.

[10] P. Sapiezynski, A. Stopczynski, R. Gatej, and S. Lehmann, “Tracking
human mobility using WiFi signals,” PLoS ONE, 2015.

[11] K. Yada, “String analysis technique for shopping path in a supermarket,”
Journal of Intelligent Information Systems, vol. 36, no. 3, 2011.

[12] PYMNTS. (2017) Geotracking gives brick-and-mortar a leg up on
ecommerce. [Online]. Available: http://bit.ly/pymnts geofencing

[13] T. Kim, M. Chu, O. Brdiczka, and J. Begole, “Predicting shoppers’
interest from social interactions using sociometric sensors,” in CHI EA,
2009.

[14] ZOYI, “Wi-Fi usage survey,” http://bit.ly/wifi survey file, July 2015.
[15] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,

“Semantic trajectories: Mobility data computation and annotation,” TIST,
vol. 4, no. 49, 2013.

[16] S. Park, S. Jung, and C. Lim, “A study on the pedestrian path choice in
clothing outlets,” Korean Institute of Interior Design Journal, vol. 28,
pp. 140–148, 2001.
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APPENDIX A

LOWER BOUNDS OF PREDICTION ACCURACY

The visit logs vk with the same visit count k are considered

to have the same information. To maximize the accuracy, we

must predict the label l of vk by the following criteria.

∀v : l(v ∈ vk) =

{
1, if E[RVbin(vk)] ≥ 1/2

0, otherwise

Considering each proportion pk = |vk|/∑k |vk| and sim-

plifying E[RVbin(vk)] as rk, the lower bound accuracy of a

model can be represented as LB =
∑

k pk · max(rk, 1 − rk).
In the experiment of only first-time visitors, LB = 1/2 since

p1 = 1 and r1 = 1/2.

The interpretation with the lower bound is as follows. For

higher predictability, the revisit tendency of each vk should be

homogeneous. In Figure 11, we can notice that store L MD

is more predictable than A GN, because |rk − 0.5| of L MD

is larger than that of A GN for the majority of k.

(a) The case of a less pre-
dictable store with LB 0.595.

(b) The case of a more pre-
dictable store with LB 0.741.

Figure 11: Lower bound accuracies of two stores.
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