
RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on
Random Partitioning

Hwanjun Song, Jae-Gil Lee∗
Graduate School of Knowledge Service Engineering, KAIST

{songhwanjun,jaegil}@kaist.ac.kr

ABSTRACT

In most parallel DBSCAN algorithms, neighboring points are as-

signed to the same data partition for parallel processing to facilitate

calculation of the density of the neighbors. This data partitioning

scheme causes a few critical problems including load imbalance

between data partitions, especially in a skewed data set. To remedy

these problems, we propose a cell-based data partitioning scheme,

pseudo random partitioning, that randomly distributes small cells

rather than the points themselves. It achieves high load balance

regardless of data skewness while retaining the data contiguity

required for DBSCAN. In addition, we build and broadcast a highly

compact summary of the entire data set, which we call a two-level

cell dictionary, to supplement random partitions. Then, we develop

a novel parallel DBSCAN algorithm, Random Partitioning-DBSCAN

(shortly, RP-DBSCAN), that uses pseudo random partitioning to-

gether with a two-level cell dictionary. The algorithm simultane-

ously finds the local clusters to each data partition and then merges

these local clusters to obtain global clustering. To validate the merit

of our approach, we implement RP-DBSCAN on Spark and conduct

extensive experiments using various real-world data sets on 12

Microsoft Azure machines (48 cores). In RP-DBSCAN, data parti-

tioning and cluster merging are very light, and clustering on each

split is not dragged out by a specific worker. Therefore, the perfor-

mance results show that RP-DBSCAN significantly outperforms

the state-of-the-art algorithms by up to 180 times.

CCS CONCEPTS

• Information systems → Clustering; • Theory of computa-

tion→MapReduce algorithms;

KEYWORDS

DBSCAN; clustering; parallelization; Spark

ACM Reference Format:

Hwanjun Song, Jae-Gil Lee. 2018. RP-DBSCAN: A Superfast Parallel DB-

SCAN Algorithm Based on Random Partitioning. In Proceedings of 2018

International Conference on Management of Data (SIGMOD’18). ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3183713.3196887

∗Jae-Gil Lee is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196887

1 INTRODUCTION

1.1 Background and Motivation

The DBSCAN [10] clustering algorithm works by finding the di-

rectly density-reachable relationship from a data point p to a data

point q, denoted by p � q, which means that p is located at the core

of a dense region and q belongs to the same dense region. Then,

the maximal set of data points connected by this relationship forms

a cluster. DBSCAN provides numerous benefits. For example, it

detects clusters of arbitrary shape, handles noises or outliers, and

does not require the number of clusters in advance.

In accordance with the recent boom of massive parallelization,

many parallel DBSCAN algorithms [4, 6–8, 13, 17–19, 23, 24, 27,

28, 35, 36] have been proposed in the literature. In most of these

algorithms, to discover directly density-reachable relationships in

parallel, the entire data set is split such that both the predecessor p
and successor q in every instance of p � q belong to the same split.

This “same-split” restriction forces the entire region (space) to split

into multiple contiguous sub-regions. In addition, to avoid missing

clusters near sub-region boundaries, these sub-regions are made

to overlap. This family of parallel DBSCAN algorithms commonly

has the following problems:

1. Expensive data split: A region split approach often becomes

quite complicated when considering the number and distribu-

tion of data points in each sub-region. The cost of such a split in-

creases as the number of dimensions in a data set increases [24].

As a result, the split phase comprised up to 42.8% of the total

elapsed time in an existing algorithm [18].

2. Load imbalance: Despite the complicated region split ap-

proach, the DBSCAN execution time varies significantly across

sub-regions because the data distributions in the sub-regions

tend to be highly diverse in a skewed data set. In existing algo-

rithms, DBSCAN execution times were reported to differ by up

to 2.90–623 times [18].

3. Duplication and expensive merging: Owing to the overlaps

between sub-regions, the sum of the numbers of data points

processed in all sub-regions is always greater (often more than

two times) than the total number of data points. This increase in

data size causes an increase in overall execution time. Moreover,

the cost ofmerging clusters is quite high because of a fair amount

of duplicated data points. The merging phase comprised up to

26.3% of the total elapsed time in an existing algorithm [18].

We contend that these problems are all rooted from the data split

based on the same-split restriction. Here, sub-regions are created

by cutting a (sub-)region parallel to one of the axes and assigning

the border to both sub-regions, as in Figure 1a. The data points

belonging to different sub-regions, as indicated by the color of a sub-

region, are processed in different batches. In contrast to DBSCAN,

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1173

(a) Region split. (b) Random split.

Figure 1: Comparison of two data split strategies.

in k-means [37] or k-medoids [31], many parallel algorithms draw

random samples to have multiple disjoint subsets that have almost

the same number and distribution of data points, as in Figure 1b.

The data points belonging to different random samples, as indicated

by the color of the data point, are processed in different batches.

We call the former region split and the latter random split.

It is self-evident that the random split strategy immediately

solves the following three problems. (1) Random sampling is typi-

cally very fast because the time complexity of reservoir sampling

is O (N) where N is the number of data points [32]. (2) All samples

can have almost the same number and distribution of data points

unless a sample is too small, thereby eliminating the possibility of

load imbalance. (3) The samples can be made disjoint with each

other by random sampling without replacement.

1.2 RP-DBSCAN Algorithm

In this paper, we propose a novel parallel DBSCAN algorithm, called

Random Partitioning-DBSCAN (RP-DBSCAN), that takes advan-

tage of the random split strategy. Most important, we remove the

“same-split” restriction to enable us to use this strategy. That is, for

the directly density-reachable relationship p � q, the predecessor p
and successor q may not exist in the same split. We aim at distribut-

ing only the predecessor points to multiple splits that are assigned

to each worker of a parallel cluster. As a result, to find the successor

points in other splits, a summary of the entire data set should be

provided to each worker. Therefore, the key technical challenge

is to make the summary structure as compact as possible while

maintaining high accuracy, such that the overhead of broadcasting

and loading the summary structure does not hinder the benefits of

the random split strategy. Toward this goal, we propose two main

techniques, pseudo random partitioning and two-level cell dictionary.

1.2.1 Pseudo Random Partitioning. Instead of true random parti-

tioning (sampling), we additionally make the data points in a small

cell belong to the same partition. Here, a cell in the d-dimensional

space is a d-dimensional hypercube with diagonal length ε which is

a DBSCAN parameter that indicates the radius of a neighborhood.

Then, we randomly sample the cells instead of the data points. As

ε is considerably smaller than the length of the entire space, this

pseudo random partitioning can achieve the effect of true random

partitioning. By choosing ε as the diagonal length of a cell, all data

points in the cell are guaranteed to belong to the same cluster if at

least one data point is located inside a dense region. This guaran-

tee greatly simplifies the process of merging the clustering results

obtained from each partition. Figure 2 illustrates the idea of pseudo

random partitioning. As indicated by the color of a cell, the data

points are assigned to the partition to which their cell belongs.

ϵ

Figure 2: Pseudo random partitioning (best viewed in color).

Owing to (pseudo) random partitioning, the ratio of the execution

time of the slowest partition to that of the fastest partition is only

1.44, being as low as 0.24% of an existing algorithm based on region

split, as shown in Section 7.3.

1.2.2 Two-Level Cell Dictionary. The cell-based pseudo random

partitioning also facilitates the development of a compact summary

structure, which we call a two-level cell dictionary. This structure is

a two-level tree. A node of the first level naturally corresponds to a

cell; a node of the second (leaf) level is a sub-cell with a side length

of one h-th of that of a cell, where h is given by a user to specify the

degree of approximation because a data point is approximated to

the center point of this sub-cell. Each node encodes the number of

points in each (sub-)cell and its position. The size of the two-level

cell dictionary is approximately 0.04–8.20% of that of the entire

data set when an error of around 1% is allowed, as shown in Section

7.6. Thus, the overhead of broadcasting and loading the two-level

cell dictionary is indeed manageable.

1.2.3 Overall Procedure of RP-DBSCAN. Using these two tech-

niques, the algorithm RP-DBSCAN comprises three phases:

1. Data partitioning prepares for parallel processing by partition-

ing the entire data set by pseudo random partitioning, builds the

two-level cell dictionary, and sends a partition and the two-level

cell dictionary to every worker.

2. Cell graph construction simultaneously finds the directly

density-reachable relationships initiating from each partition.

Then, these individual relationships can be aggregated at the cell

level, resulting in a cell graph. Overall, a cell graph represents

local clustering obtained from a given partition.

3. Cell graph merging combines the cell graphs returned from

each worker to produce global clustering. It translates to finding

spanning trees in directed multigraphs.

1.3 Summary

Key Contributions:

• Novel partitioning: This work entails a conceptual shift in the

manner in which we perform DBSCAN in parallel. We show

that random split is preferable to region split, thereby achieving

much higher performance.

• Theoretical guarantee: As an enabling technique, we design

a cell-based pseudo random partitioning as well as a highly com-

pact two-level cell dictionary. Although this design introduces

approximation, we theoretically and empirically prove that the

error is indeed negligible.

• High performance: As far as we know, RP-DBSCAN is the

fastest parallel DBSCAN algorithm. It significantly outper-

forms a few popular Spark-based implementations, e.g., NG-

DBSCAN [23] by 165–180 times.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1174

Table 1: Summary of the notation.

Notation Description

D the entire set of points

P a pseudo random partition

C a cluster of points

C a cell of points

p, q, o a point in D
M,M a sub-dictionary and a two-level cell dictionary

sc a sub-cell inM
q̂ a center point of a sub-cell

G,G a cell subgraph and a global cell graph

ε the radius of a neighborhood

minPts the minimum number of neighbor points

ρ an approximation parameter

�, � fully and partially direct reachability

Software: The source code of RP-DBSCAN is fully available at

https://github.com/kaist-dmlab/RP-DBSCAN.

Scope: (1) Platform: An algorithm can be expedited in several

ways. The most popular direction is parallel, distributed computing

based on the MapReduce [9] model, which is the scope of this paper.

Although parallel processing can be communicated by the message

passing interface (MPI) standard, the MPI-based parallelization (e.g.,

[13, 27, 28]) is beyond the scope of this paper. In addition, since

acceleration by a graphical processing unit (GPU) (e.g., [1, 6, 34])

is orthogonal to our work, it is not discussed in this paper. (2)

Distance:We use the Euclidean distance between data points, as

in most DBSCAN studies.

Outline: Section 2 explains the original DBSCAN algorithm and

reviews the state-of-the-art parallel DBSCAN algorithms. Section

3 overviews our proposed algorithm RP-DBSCAN. Sections 4, 5,

and 6 detail the three phases of RP-DBSCAN. Section 7 reports the

evaluation results. Finally, Section 8 concludes this study.

2 BACKGROUND AND RELATEDWORK

2.1 Background: DBSCAN [10]

DBSCAN [10] requires two parameters: the radius of a neighbor-

hood, ε , and the minimum number of neighbor points,minPts . Its
key idea is to find dense regions and to expand them in order to form

clusters. A dense region is represented by a core point in Definition

2.1 and is recursively expanded by finding directly density-reachable

or density-reachable points in Definitions 2.2 and 2.3. Table 1 sum-

marizes the notation used throughout this paper. Given two points

p, q ∈ Rd in a d-dimensional space, dist(p,q) denotes the Euclidean
distance between p and q; |Nε (p) | denotes the neighborhood of p
with the radius ε .

Definition 2.1. A point p is a core point if |Nε (p) | ≥ minPts .
isCore (p) returns true if p is a core point. �

Definition 2.2. A point q is directly density-reachable from a point

p if isCore (p) ∧ dist(p,q) ≤ ε , which is denoted by p � q. �

Definition 2.3. A point q is density-reachable from a point p if

there is a sequence of points p1,p2, . . . ,pk such that p = p1 ∧ q =
pk ∧ ∀i ∈ [1,k − 1] : pi � pi+1, which is denoted by p � · · · � q. �

A cluster C in DBSCAN is formally defined by Definition 2.4.

Definition 2.4. A cluster C is a non-empty subset of points in D
satisfying that:

• (Maximality) ∀p,q : p ∈ C ∧ p � · · · � q ⇒ q ∈ C;
• (Connectivity) ∀p,q ∈ C⇒ ∃o ∈ C : o � · · · � p ∧o � · · · � q.

For 17 years, the time complexity of DBSCAN was claimed as

O (n logn) in a d-dimensional Euclidean space by Ester et al. [10],

but Gan and Tao [11] recently proved that at least Ω(n4/3) is re-
quired if d ≥ 3. To overcome this high complexity, several ap-

proximate DBSCAN algorithms have been developed to run on a

single machine [11, 25, 30, 36]. However, it is unlikely that a single

machine supports a typical size of current big data.

It is often to employ a cell-based grid structure to speed up the

non-parallel DBSCAN algorithm in previous studies (e.g., [11, 30,

36]). While RP-DBSCAN also uses a cell-based grid structure, our

main effort is to realize random partitioning for DBSCAN rather

than just speed up local DBSCAN clustering.

2.2 Parallel DBSCAN Algorithms

2.2.1 Naïve Random Split. SDBC [19], S-DBSCAN [24], SP-

DBSCAN [17], and Cludoop [36] adopted a naïve random split strat-

egy to parallelize DBSCAN for MapReduce. Since these algorithms

focus only on how to decompose the clustering problem into smaller

ones, they simply split the entire data set into multiple disjoint sub-

sets based on random sampling and then merge the local clusters

obtained from each random split. Hence, this family of algorithms

succeeded to improve efficiency but lost accuracy [18, 28]. The re-

gion queries for DBSCAN are performed on randomly sampled data

points, and thus it is impossible to capture the accurate density of

regions because of the shared-nothing environment. Moreover, the

merging process is also approximate for the same reason. While

RP-DBSCAN also adopts the random split strategy, the accuracy of

region queries is guaranteed by the two-level cell dictionary.

2.2.2 Region Split. To avoid sacrificing accuracy, the region

split strategy has been proposed, which splits the entire region into

multiple contiguous, overlapping sub-regions. The region queries

are accurately performed on each contiguous sub-region, and the

local clusters obtained from the sub-regions are correctly merged

based on the shared points in overlapping regions. The key chal-

lenge here is to balance the load among contiguous sub-regions

because spatial data are usually heavily skewed [18]. Thus, several

split strategies have been proposed, as follows:

• Even-split partitioning: PDBSCAN [35] and RDD-DBSCAN [7]

aim at distributing the points as evenly as possible.

• Reduced-boundary partitioning: DBSCAN-MR [8] aims at mini-

mizing the number of points inside overlapping regions.

• Cost-based partitioning: MR-DBSCAN [18] considers the number

and distribution of data points in each sub-region to estimate

the cost of local clustering for the sub-region.

However, these algorithms suffer from high load imbalance and

data duplication as we demonstrate in Section 7.2.

2.2.3 Graph Basis. The recently proposed NG-DBSCAN [23]

adopted a vertex-centric approach [26] to parallelize DBSCAN. It

builds a neighbor graph which gradually converges from a ran-

dom starting configuration toward an approximation of a k-nearest

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1175

core

border

(a) Core cell. (b) Fully directly reachable. (c) Partially directly reachable.

Figure 3: Direct reachability between cells.

neighbor graph and then finds approximate DBSCAN clusters using

the neighbor graph instead of performing region queries. However,

it still takes long to build the neighbor graph for large-scale data

sets as in Section 7.2. The main benefit of NG-DBSCAN is to sup-

port arbitrary data and any symmetric distance measure, which is

beyond the scope of this paper.

3 OVERVIEW OF RP-DBSCAN

Data Space: We define a data space as a grid consisting of cells, as

in Definition 3.1. The reason for the diagonal length ε is detailed
later in this section. At the same time, as the size of the cell is

considerably smaller than that of the entire space, pseudo random

partitioning achieves the effect of true random partitioning.

Definition 3.1. [11, 12, 15] A grid is a set of cells on the data space

R
d . A cell is a d-dimensional hypercube with diagonal length ε . �

Cell-Level Reachability: To take complete advantage of the prox-

imity of the cell, we aim at discovering a set of directly reachable

relationships between the points from a pair of cells in a batch. In

this regard, we extend the original definitions for points in DB-

SCAN to those for cells. First, a core cell in Definition 3.2 is the

extension of a core point. A core cell provides a useful property by

setting the diagonal length, where the maximum distance between

points in a cell is ε . As illustrated in Figure 3a, since all the points

in the core cell C1 are directly reachable from the core point p, all
the points in C1 belong to the same cluster by maximality.

Definition 3.2. [11, 12, 15] A cell C is a core cell if there exists at

least one core point p ∈ C such that |Nε (p) | ≥ minPts . �

If at least one directly reachable relationship appears across

two cells, we say that the two cells also have a directly reachable

relationship, as in Definitions 3.3 and 3.4. In more detail, in Figure

3b, when a point q in a core cellC2 is directly reachable from a core

pointp in a core cellC1,C2 is said to be fully directly reachable from

C1 because all points inC2 belong to the same cluster as those inC1;
in Figure 3c, ifC2 is not a core cell,C2 is said to be partially directly

reachable from C1 because not all points in C2 belong to the same

cluster as those in C1. The only difference between Definitions 3.3

and 3.4 is whether C2 is core or not.

Definition 3.3. A cell C2 is fully directly reachable from a cell

C1 if isCore (C1) ∧ ∃p ∈ C1 : isCore (p) ∧ isCore (C2) ∧ ∃q ∈ C2 :

dist(p,q) ≤ ε , which is denoted by C1 � C2. �

Definition 3.4. A cell C2 is partially directly reachable from a cell

C1 if isCore (C1) ∧ ∃p ∈ C1 : isCore (p) ∧ ¬isCore (C2) ∧ ∃q ∈ C2 :

dist(p,q) ≤ ε , which is denoted by C1 �C2. �

DBSCAN clustering is generated by properly adding fully or

partially directly reachable cells from at least one core cell. The

membership of a point to a cluster C is determined by Lemma 3.5.

Algorithm 1 RP-DBSCAN (Overall Procedure)

Input: A setD of N data points, ε ,minPts , k : the number of parti-

tions, ρ: an approximation rate

Output: A set D′ of N labeled points

1: /* Phase I: Data Partitioning */

2: /* Figure 4b⇒ Section 4 */

3: {P1, . . . ,Pk } ← Pseudo_Random_Partitioning(D, ε , ρ, k);
4: M ← Cell_Dictionary_Building({P1, . . . ,Pk }, ε , ρ);
5: Cell_Dictionary_Broadcasting(M);

6: /* Phase II: Cell Graph Construction */

7: /* Figure 4c⇒ Section 5 */

8: {G1, . . . ,Gk } ← Core_Marking_and_Subgraph_Building

({P1, . . . ,Pk }, ε ,minPts);
9: /* Phase III: Cell Graph Merging */

10: /* Figure 4d⇒ Section 6 */

11: G ← Progressive_Graph_Merging({G1, . . . ,Gk });
12: D′ ← Point_Labeling({P1, . . . ,Pk }, G);
13: return D′ /* labeled points */

Lemma 3.5. When C1 � C2 or C1 �C2, the points in C1 and C2

are assigned to a cluster, as follows:

• (Fully) C1 ⊆ C ∧C1 � C2 ∧ q ∈ C2 ⇒ ∀q ∈ C;
• (Partially) C1 ⊆ C ∧C1 �C2 ∧ p ∈ C1 : isCore (p) ∧ q ∈ C2 ⇒
∀q ∈ C : dist(p,q) ≤ ε .

Proof. (Fully) Let p ∈ C1 and q ∈ C2 be core points in two clus-

ters C1 and C2, respectively. By maximality of DBSCAN, Nε (p) ⊆
C1 and Nε (q) ⊆ C2. Then, because ∃o ∈ C2 : o ∈ C1 ∧ o ∈ C2,
the two clusters C1 and C2 should be merged into a cluster C,

and this concludes the proof. (Partially) Let p ∈ C1 be a core

point in a cluster C. By maximality of DBSCAN, Nε (p) ⊆ C. Then,
∀q ∈ C : q ∈ C2 ∧ q ∈ Nε (p), and this concludes the proof. �

Corollary 3.6. Point labeling by Lemma 3.5 produces the clus-

tering equivalent to that of the original DBSCAN [10] algorithm. �

Overall Procedure: Figure 4 and Algorithm 1 describe the three

phases of RP-DBSCAN running in parallel, as follows:

1. Phase I (data partitioning): The algorithm performs pseudo

random partitioning (Line 3). In Figure 4b, a small square in-

dicates a cell, and the entire space is partitioned into the cells,

where no cell is created for empty regions. The cells in different

colors are distributed to two different partitions P1 and P2. Then,
the algorithmmakes a two-level cell dictionary and broadcasts it

to all workers (Line 4–5). This dictionary enables us to perform

region queries without any communication with other workers.

2. Phase II (cell graph construction): Using the two-level cell

dictionary, the algorithm performs region queries on all inner

cells that exist in each partition to distinguish between core

and non-core cells. For example, Cnc1–Cnc5 in Figure 4b are

excluded in Figure 4c if they are determined to be non-core.

Then, the algorithm constructs a cell graph by searching all

fully or partially directly reachable cells from each core cell of

each partition (Line 8). For example, in Figure 4c, a directed edge

between cells in the graph means that the two cells are fully

or partially directly reachable. The type of directly reachabil-

ity, either fully or partially, cannot be confirmed in this phase

because the successor can be located in another partition.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1176

core cell

(a) Data set. (b) Data partitioning. (c) Cell graph construction. (d) Cell graph merging.

Figure 4: Overall procedure of the RP-DBSCAN algorithm (best viewed in color).

Algorithm 2 Data Partitioning (Phase I) in MapReduce1

1: class Pseudo_Random_Partitioning /* Phase I-1 */

2: methodMap(NULL, point p)
3: cid ← Get the cell id of a point p;
4: emit(cid , p);
5: method Reduce(cid , {p1,p2, . . .})
6: C ← {p1,p2, . . .}; /* set of points in the same cell */

7: pid ← Pick a random key from {1, . . . ,k };
8: emit(pid , C);
9: method Reduce(pid , {C1,C2, . . .})
10: Ppid ← {C1,C2, . . .}; /* set of cells in the same part */

11: emit(pid , Ppid);
12: class Cell_Dictionary_Building /* Phase I-2 */

13: methodMap(pid , Ppid)
14: for each Ci ∈ Ppid do

15: Ci ← {sc1, sc2, . . .}; /* set of sub-cells in Ci */
16: Mpid ←Make a two-level cell dictionary by Def. 4.2;

17: emit(NULL,Mpid);

18: method Reduce(NULL, {M1,M2, . . . ,Mk })
19: M ←M1 ∪M2 ∪ . . . ∪Mk ;

20: emit(NULL,M);

3. Phase III (cell graph merging): Because a cell graph is con-

structed for a single partition, the algorithm merges all the

graphs and confirms whether each edge indicates fully or par-

tially directly reachable relationship. Then, the clusters are ex-

panded based on this merged graph, and all the points are labeled

according to cluster membership (Lines 11–12). For example,

in Figure 4d, a cluster C1 is formed by the cells located at the

lower-left corner of P1 and P2.

4 PHASE I: DATA PARTITIONING

Phase I consists of two sub-phases: (I-1) pseudo random partitioning

and (I-2) cell dictionary building.

4.1 Pseudo Random Partitioning

Pseudo random partitioning in Figures 2 and 4b randomly divides

the entire set of cells to partitions of the same size. Since each

worker finds the successor cells using the cells in a given partition

as the predecessor cells, this partitioning successfully achieves the

load balance between the partitions.

The first part of Algorithm 2 explains the procedure of pseudo

random partitioning. The algorithm simultaneously assigns each

point to the appropriate cell (Lines 2–4). Partitioning is performed

using a random key after aggregation of the assigned points (Lines

1For ease of exposition, we describe the three phases in the form of MapReduce. It is
straightforward to implement the pseudo code on Spark.

5

6

4

3 4 dictionary dictionary

two-level cell dictionary

Figure 5: Two-level cell dictionary (h = 2).

5–8). Then, all the cells with the same key are combined to form a

pseudo random partition (Lines 9–11).

4.2 Cell Dictionary Building

4.2.1 Dictionary Structure and Algorithm. Instead of dealing

with individual points, by following the concept of the cell, we

define a sub-cell in Definition 4.1. The concept of the sub-cell is

inspired by the work of Gan and Tao [11]. Then, we use the density

and position of the (sub-)cell to summarize the data set. The density

of a (sub-)cell is the number of points inside it, and the position is the

center of the (sub-)cell. Points are approximated to the belonging

sub-cell based on their positions. An integer value inside each sub-

cell in Figure 5 indicates its density.

Definition 4.1. A cell in a d-dimensional space is composed of

2d (h−1) sub-cells, where a sub-cell is a d-dimensional hypercube

with diagonal length ε/2h−1. Here, h = 1 + �log2 (1/ρ)�, where ρ
(> 0) is the parameter that determines the size of a sub-cell. (The

smaller the ρ, the smaller the sub-cell.) �

We now introduce the two-level cell dictionary in Definition 4.2

based on the level of cells and that of sub-cells, as in Figure 5.

Definition 4.2. A two-level cell dictionary is a tree with a node of

the first level (root) and multiple nodes of the second level (leaf).

A node consists of multiple internal entries. A root node entry

encodes each cell, and the leaf node entry encodes each of the sub-

cells contained in the same cell. An entry of the root node points to

a leaf node containing the belonging sub-cells. Every entry records

〈position,density〉 for the corresponding (sub-)cell. �

The two-level cell dictionary effectively compresses a data set

with two characteristics. First, it stores only the density of the (sub-

)cell, but does not store the exact position of each point. Second, the

position of a sub-cell is represented by only d (h − 1) bits because
the locations of sub-cells can be represented by the ordering of the

sub-cells inside the cell to which they belong. Lemma 4.3 provides

the size of a two-level cell dictionary.

Lemma 4.3. Let the number of cells and sub-cells be |cell | and
|sub-cell |, respectively. Suppose that we use the float type of 32 bits

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1177

dictionary dictionary

split axis

. . .

. . .

.

. . .

. . .

Figure 6: Dictionary defragmentation.

to represent the exact position of each dimension. Then, the size of a

two-level cell dictionary in bits is represented by Eq. (1).

size = 32(|cell | + |sub-cell |)
︸���������������������︷︷���������������������︸

size of density

+ 32d |cell | + d (h − 1) |sub-cell |
︸��������������������������������︷︷��������������������������������︸

size of position

(1)

Proof. A dictionary should store the density and position of

each (sub-)cell. Regarding density, an integer number of four bytes

is required for each (sub-)cell. Regarding position, d float numbers

are required for each cell to represent the exact position of a cell,

and d (h − 1) bits are required for each sub-cell to represent the

order of a sub-cell within a cell. �

The second part of Algorithm 2 explains the procedure of cell

dictionary building. The algorithm divides a cell into sub-cells and

calculates the density of each (sub-)cell. Next, it builds a two-level

cell dictionary for each pseudo random partition according to Def-

inition 4.2 (Lines 13–17). Then, the dictionaries are combined to

cover the entire data set (Lines 18–20).

4.2.2 Dictionary Defragmentation. We elaborate on the method

combining the dictionaries in Line 19 of Algorithm 2. Because a

worker has a fixed amount of memory available for a job, if the size

of a data set is very large, it is impossible to load the entire two-

level cell dictionary instantaneously even if it is highly compact

compared with the data set. Thus, it is preferable to keep a set of

disjoint sub-dictionaries in Definition 4.4 and iterate through the

sub-dictionaries. For example, a part of the two-level cell dictionary

separated by dashed lines is a sub-dictionary in Figure 5.

Definition 4.4. A sub-dictionary is a part of a two-level cell dic-

tionary that is composed of a subset of the root node entries and

the leaf nodes connected to them. �

When iterating through the set of sub-dictionaries to perform

region queries, it is desirable to minimize the number of relevant

sub-dictionaries. We call this optimization dictionary defragmen-

tation. It reallocates all cells to the sub-dictionaries such that con-

tiguous cells are assigned to the same sub-dictionary as much as

possible and each sub-dictionary contains a similar number of (sub-

)cells, as shown in Figure 6. To this end, we adopt binary space

partitioning (BSP) [5] that recursively partitions a given data space

until the size of a sub-dictionary becomes smaller than the amount

of the available main memory. The BSP enumerates all possible

cut candidates and picks up the best one that minimizes the dif-

ference between the sizes of the two components. Each best cut

induces the two sets of cells, and each set corresponds to a dis-

joint sub-dictionary in Figure 6. Then, it is highly likely that an

ε-neighborhood is solely contained in a single sub-dictionary which
can fit in main memory. We discuss how this technique enables us

to skip irrelevant sub-dictionaries in Section 5.2.

(a) An exact ε-region query.

− l

(b) An (ε, ρ)-region query.

Figure 7: Exact and approximate region queries (h = 2).

5 PHASE II: CELL GRAPH CONSTRUCTION

Phase II is intended to simultaneously find all successor cells, which

can be located in other partitions, from the predecessor cells in each

partition. Since this phase relies on the two-level cell dictionary

which approximates a point with a sub-cell, we introduce the (ε, ρ)-
region query and the (ε, ρ)-neighbor in Definition 5.1.

Definition 5.1. Let us consider a sub-cell sc with ρ as its approxi-

mation parameter and q̂ as its center point. Then, a sub-cell sc is an
(ε, ρ)-neighbor of a point p if dist(p, q̂) ≤ ε . An (ε, ρ)-region query

aims at finding such (ε, ρ)-neighbors. �

Accuracy of (ε, ρ)-Region Query: The set of (ε, ρ)-neighbors
could be different from that of exact ε-neighbors because of the
approximation. For example, in Figure 7b, the set of the (ε, ρ)-
neighbors of the point p is {sc2, sc4, sc5, sc6}. In contrast, in Figure

7a, the set of the ε-neighbors is {a,b,d, e, f }. Thus, the point a is lost
in the (ε, ρ)-region query because the center point of sc1 is slightly
outside the range of ε from the point p. Nevertheless, Lemma 5.2

proves that the two types of queries in Figure 7 return almost the

same result if ρ is sufficiently small.

Lemma 5.2. Let Bε (p) and B̂ε (p) be the boundary for an ε-region
query and an (ε, ρ)-region query, respectively, for a point p. Then,
B(1−ρ/2)ε (p) ≤ B̂ε (p) ≤ B(1+ρ/2)ε (p).

Proof. Let {q1, . . . ,qn } be the points inside a sub-cell with ρ as

its approximation parameter and q̂ as its center point. Then, since

the diagonal length of the sub-cell is formulated as ε/2 �log2 (1/ρ)� ≤
ε/2log2 (1/ρ) = ρε by Definition 4.1, max1≤i≤n dist(qi , q̂) ≤ ρε/2.
Thus, for any p and qi , Eq. (2) holds by the triangle inequality.

dist(p,qi) − ρε/2 ≤ dist(p, q̂) ≤ dist(p,qi) + ρε/2 (2)

By Definition 5.1, without loss of generality, B(1−ρ/2)ε (p) ≤
B̂ε (p) ≤ B(1+ρ/2)ε (p). �

Furthermore, Theorems 5.3 and 5.4 prove that the difference

between the DBSCAN clustering by exact ε-region queries and that

by (ε, ρ)-region queries is negligible when ρ is sufficiently small.

The minor difference could happen mostly if the value of ε was a
poor choice [2, 11].

Theorem 5.3. [11] Let Cε be the clustering obtained by the exact

DBSCAN algorithm with ε . Suppose that C1 ∈ Cε and C2 ∈ C(1+ρ)ε .

Then, for any cluster C ∈ Cx such that Bε (p) ≤ Bx (p) and Bx (p) ≤
B(1+ρ)ε (p), there are two clusters C1 and C2 satisfying C1 ⊆ C ⊆ C2.

Proof. If the two points belong to the same cluster C, they are

definitely in the same cluster C2. In contrast, the cluster C1 may not

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1178

candidate cells

C

C

CC

C

CC

C

CCCCCC

CCCC

CC

(a) Cell level.

1
1 2

1

2 1 1

1

1
1 2

1

(b) Sub-cell level.

Figure 8: Example of an (ε, ρ)-region query (h = 2).

contain the two points. But, as the approximation parameter ρ goes

to 0, they fall into the same cluster C1. Refer to [11] for details. �

Theorem 5.4. Suppose that C1 ∈ C(1−ρ/2)ε and C2 ∈ C(1+ρ/2)ε .

Then, for any cluster C obtained by DBSCAN based on (ε, ρ)-region
queries, there are two clusters C1 and C2 satisfying C1 ⊆ C ⊆ C2.

Proof. Eq. (3) holds by Lemma 5.2.

B(1−ρ/2)ε (p) ≤ B̂ε (p) ≤ B(1+ρ/2)ε (p) (3)

Then, by the sandwich theorem (Theorem 5.3), C1 ⊆ C ⊆ C2. �

Processing of (ε, ρ)-Region Query: An (ε, ρ)-region query is ef-

ficiently processed by a two-level cell dictionary. Given a point p,
there are two cases of topological relations between a specific cell

and B̂ε (p). First, a cell is fully contained within B̂ε (p). Then, all
sub-cells inside that cell are added to the set of (ε, ρ)-neighbors.
Second, a cell is partially contained within B̂ε (p). Then, the sub-
cells whose center point is included in B̂ε (p) are added to the set of
(ε, ρ)-neighbors.

Example 5.5. In Figure 8a, at the cell level of the dictionary,

{C2} is fully contained in B̂ε (p), and {C3,C4,C5,C6,C7} is partially
contained in B̂ε (p). If we dive into the sub-cell level of the dictionary
in Figure 8b, {sc2, sc3, sc4} is contained in B̂ε (p). Thus, the set of
the (ε, ρ)-neighbors of the point p becomes {sc1, sc2, sc3, sc4}. �

Complexity of (ε, ρ)-Region Query: The time complexity of an

(ε, ρ)-region query is given by Lemma 5.6.

Lemma 5.6. For any number of dimensions, the time complexity of

an (ε, ρ)-region query isO (log |cell |), where |cell | is the total number

of cells in the two-level cell dictionary.

Proof. For any fixed ρ, the total number of (sub-)cells fully or

partially contained in B̂ε (p) is bounded by a constant c regardless
of dimension [11]. The time complexity of finding such candidate

cells with R*-tree or kd-tree is O (log |cell |). Thus, the overall time

complexity is O (log |cell | + c) = O (log |cell |). �

We now proceed to the details of Phase II that performs first

core marking and then sub-graph building.

5.1 Core Marking and SubGraph Building

5.1.1 Core Marking. The direct reachability between two cells

is always initiated from a core cell, so it is necessary to mark every

core cell in each partition. This core marking procedure can be

done by simply counting the points in (ε, ρ)-neighbors.

Example 5.7. In Figure 8b, the total number of points in (ε, ρ)-
neighbors of the point p including itself is 6. IfminPts ≤ 6, the cell

C1 which has the point p is marked as core. �

Algorithm 3 Cell Graph Construction (Phase II) in MapReduce

1: class Core_Marking_and_Subgraph_Building/* Phase II */

2: methodMap(pid , Ppid)
3: M ← Get a two-level cell dictionary;

4: Gpid ← (∅, ∅); /* Gpid is the cell subgraph. */

5: for each C ∈ Ppid do

6: for each p ∈ C do

7: NSC ← Perform an (ε, ρ)-region query by Def. 5.1.

8: num← ∑ density of a sub-cell in NSC;
9: if num ≥ minPts then /* Mark a core point */

10: p.isCorePoint← True;

11: if C .numOfCorePt ≥ 1 then /* Mark a core cell */

12: C .isCoreCell← True;

13: NC ← Get all cells including the sub-cells in NCS ;
14: /* Add directed edges 〈f rom, to〉 into Gpid */

15: for each Ci ∈ NC do

16: Gpid .E← Gpid .E ∪ {〈C, Ci 〉};
17: emit(NULL, Gpid); /* subgraph for the partition */

5.1.2 Cell Subgraph Building. After identifying core cells in a

partition, we find fully or partially directly reachable cells from

those core cells. For a core point p in a core cell C1, all cells that

contain at least one sub-cell in (ε, ρ)-neighbors of p are fully or

partially directly reachable from C1 by Definitions 3.3 and 3.4.

In order to intuitively represent directly reachable relationships

found, we build a cell graph, which is a directed graph G = (V,E)
in Definition 5.8. Here, we say that a cellC2 is undetermined directly

reachable from a cell C1 (C1?�C2), if we do not know whether C2

is core or not because it is located in another partition.

Definition 5.8. A cell graph G = (V,E) where vertices are cells
and edges are reachability relationships between cells, as follows:

• V = Vc ∪Vnc ∪Vun . Here, Vc is a set of core cells, Vnc is a set
of non-core cells, and Vun is a set of undetermined cells because

they are located in other partitions.

• E = Ef ∪ Ep ∪ Eun . Here, Ef is a set of fully directly reachable

relationships, Ep is a set of partially directly reachable rela-

tionships, and Eun is a set of undetermined directly reachable

relationships because the successor cells are located in other

partitions. More formally, three types of edges are as follows:

– Ef = {〈C1,C2〉 | C1 � C2 ∧C1,C2 ∈ Vc }
– Ep = {〈C1,C2〉 | C1 �C2 ∧C1 ∈ Vc ,C2 ∈ Vnc }
– Eun = {〈C1,C2〉 | C1?�C2 ∧C1 ∈ Vc ,C2 ∈ Vun }
The edges of the three types are called full, partial, and undeter-

mined edges, respectively. �

Here, since a cell graph is constructed for a single partition, we

call it a cell subgraph to distinguish from the cell graph for the

entire data set.

5.1.3 Algorithm. Algorithm 3 describes the overall procedure

of Phase II. The algorithm performs an (ε, ρ)-region query on each

point of the cells in the partition (Lines 5–7). Here, NSC denotes

a set of (ε, ρ)-neighbors. Next, it estimates the number of points

by summing up the densities of all sub-cells in NSC . If the sum is

greater than or equal tominPts , the current point p is marked as

core (Lines 8–10). In addition, the cell that has at least one core

point is marked as core (Lines 11–12). Then, a cell subgraph Gpid is

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1179

undetermined cell
non-core cell

undetermined edge

full edge
partial edge

core cell

. . .

. . .

(a) Tournament. (b) Single merger. (c) Edge type detection. (d) Edge reduction.

Figure 9: Overall procedure of progressive graph merging.

constructed by adding the directed edges from a core cell to all cells

that have a sub-cell of NSC (Lines 13–16). Finally, the algorithm

emits the resulting cell subgraph Gpid (Line 17).

5.2 Sub-Dictionary Skipping

We now discuss how an (ε, ρ)-region query works when a two-

level cell dictionary consists of multiple sub-dictionaries. For this

purpose, in Definition 5.9, we define the minimum bounding rec-

tangle (MBR) that covers all sub-cells in a given sub-dictionary.

Definition 5.9. A minimum bounding rectangle (MBR) of a sub-

dictionary is a hypercube in a d-dimensional coordinate system,

whose boundary is determined by the smallest coordinatemin(i)
and the largest coordinatemax (i) of the sub-cells indexed in the

sub-dictionary for each dimension (1 ≤ i ≤ d). �

Consulting the MBR of a sub-dictionary with a point p, we are
able to verify whether the sub-dictionary has the (ε, ρ)-neighbors
of the point p by Lemma 5.10. This property, which we call

sub-dictionary skipping, enables us to safely skip irrelevant sub-

dictionaries when performing (ε, ρ)-region queries.

Lemma 5.10. LetM be the sub-dictionary with defragmentation.

Suppose that p (i) is the position for the i-th dimension of a point p.
If ∃i : (max (i) < p (i) − ε) or (min(i) > p (i) + ε), then M can be

skipped for an (ε, ρ)-region query of p.

Proof. Let q̂ be the center point of a sub-cell inM with ρ as its

approximation parameter. If ∃i : (max (i) < p (i) − ε) or (min(i) >
p (i) + ε), Eq. (4) holds.

q̂(i) ≤ max (i) < p (i) − ε or q̂(i) ≥ min(i) > p (i) + ε (4)

Then, ∀q̂, dist(p, q̂) > ε . Therefore, the sub-dictionaryM does not

have any (ε, ρ)-neighbor of p by Definition 5.1. �

Overall, sub-dictionary skipping together with dictionary de-

fragmentation improves the performance of the (ε, ρ)-region query

as well as reduces the memory usage for the two-level cell dictio-

nary while it does not affect the result of the (ε, ρ)-region query,

compared with when we used the single, entire dictionary.

6 PHASE III: CELL GRAPH MERGING

To expand DBSCAN clusters, Phase III merges all cell subgraphs,

each of which is generated from a partition, to the global cell graph

G in Definition 6.1. Then, each point is labeled with cluster mem-

bership based on G. Phase III consists of two sub-phases: (III-1)

progressive graph merging and (III-2) point labeling.

Definition 6.1. A global cell graph means a cell graph (Definition

5.8) for the entire data set, where Vun = ∅ and Eun = ∅. �

Algorithm 4 Cell Graph Merging (Phase III) in MapReduce

1: class Progressive_Graph_Merging /* Phase III-1 */

2: /* G1, G2 are the given two subgraphs for a match. */

3: method Reduce(NULL, {G1,G2})
4: G← G1 ∪ G2 by Def. 6.2;

5: for each edдe ∈ G do

6: Determine the type of edдe by Def. 5.8;

7: G← Remove redundant full edges as in Sec. 6.1.

8: emit(NULL, G); /* Emit G for the next round */

9: class Point_Labeling /* Phase III-2 */

10: methodMap(pid , Ppid)
11: G ← Get the result in the final round of Phase III-1;

12: for each C ∈ Ppid do

13: if C .isCoreCell = True then /* core cells */

14: ClusterId ← Get the cluster id of C in G;
15: for each p ∈ C do

16: emit(p, ClusterId); /* point label */

17: else /* non-core cells */

18: PC← {Cx | ∀Cx ∈ D,Cx �C}; /* predecessors */

19: for each p ∈ PC, q ∈ C do

20: /* Check the second condition of Lemma 3.5 */

21: if isCore (p) ∧ dist(p,q) ≤ ε then
22: ClusterId ← Get the cluster id of p in G;
23: emit(q, ClusterId); /* point label */

6.1 Progressive Graph Merging

It is important to make this phase scalable to the data size, as all

cell subgraphs should be collected. An advantage is that we do not

have to consider every edge of all cell subgraphs to obtain correct

DBSCAN clusters. For each full edge, the points in both cells belong

to the same cluster regardless of its direction by Lemma 3.5. Thus,

after disregarding the directions of full edges, we can eliminate the

redundant full edges that cause cycles between core cells.

6.1.1 Tournament. To gradually remove redundant edges, we

merge all cell subgraphs in a tournament manner composed of

multiple parallel rounds in Figure 9a. Briefly, in each match of a

round described as the first part of Algorithm 4, (1) RP-DBSCAN

combines two given cell subgraphsG1 andG2 into one cell subgraph

G1 ∪ G2 (Line 4), (2) detects the type of each undetermined edge

in G1 ∪ G2 (Lines 5–6), and (3) eliminates redundant full edges in

G1 ∪ G2 (Line 7). These procedures repeat until the tournament

finishes, i.e., only one cell graph is left. The result of the final round

is the global cell graph G with all redundant edges removed.

6.1.2 Single Merger. A merger of G1 and G2 in Definition 6.2

makes one cell subgraph G1 ∪ G2, as in Figure 9b. Since each cell

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1180

spanning forest

non-core cell full edgepartial edgecore cell

(a) Data set. (b) Global graph G. (c) Point labeling.

Figure 10: Point labeling based on the global cell graph G.
subgraph is constructed from a disjoint partition, only the cells in

that partition are confirmed to be core or non-core. In the merged

subgraph, more cells are confirmed to be core or non-core. In this

figure, a hollow vertex indicates an undetermined cell, and a solid

(either black or gray) vertex indicates a core or non-core cell. From

Figure 9a to Figure 9b, a few empty vertices are converted to solid

vertices. The subsequent procedures are performed on this merged

cell subgraph G1 ∪ G2.
Definition 6.2. Given two cell subgraphs G1 = (V1,E1) and

G2 = (V2,E2), their merger is G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2).
If a cell contained in both V1 and V2 have conflicting types, an

undetermined cell is promoted to a core or non-core cell. In contrast,

E1 ∩ E2 = ∅. �

6.1.3 Edge Type Detection. Since the types of the cells inG1∪G2
are updated, the types of the edges should be updated accordingly

by Definition 5.8, as in Figure 9c. We disregard the direction of each

full edge. If either cell of an edge is undetermined, the type of the

edge cannot be confirmed in the current round. In this figure, a

dashed arrow indicates an undetermined edge, a solid black line

indicates a full edge, and a solid gray arrow indicates a partial edge.

From Figure 9b to Figure 9c, a few dashed arrows are converted to

black lines or gray arrows.

6.1.4 Edge Reduction. To identify redundant full edges, we find a

spanning forest on all undirected edges in the cell subgraphG1∪G2,
as in Figure 9d. It is widely known that the spanning forest is

found in linear time by either depth-first search or breadth-first

search with hashing [21]. Even if all the cycles between core cells

are removed, there is no change in the expressive power of the

cell subgraph G1 ∪ G2 because only a single path between cells is

necessary. From Figure 9c to Figure 9d, the four black lines that

participate in neither of the two spanning trees are removed.

6.2 Point Labeling

Phase III-2 translates cluster membership at the cell level to at the

point level to get the clustering equivalent to the original DBSCAN

algorithm. The second part of Algorithm 4 implements Lemma 3.5

and describes the procedure of point labeling. The algorithm gets

the global cell graph G and checks whether each cell in a given

partition is core or not (Lines 11–12). If the cell is core, since each

spanning tree in G is the maximal set of core cells to form a cluster

as in Figure 10b, the algorithm finds the spanning tree to which it

belongs (Lines 13–16). If the cell is not core, RP-DBSCAN obtains

all predecessor cells of the non-core cell in G. Then, the algorithm
individually checks the distance for each pair of a point in the

predecessor cells and a point in the given non-core cell. The point q
in the non-core cell is labeled with the same cluster as that of a core

Table 2: Algorithms compared for experiments.

Algorithm Description Implementation

DBSCAN [10] original algorithm in R package

SPARK-DBSCAN [18] cost-based wo. ρ-approx. open source2

ESP-DBSCAN [7] even-split w. ρ-approx. by us

RBP-DBSCAN [8] reduced-boundary w. ρ-approx. by us

CBP-DBSCAN [18] cost-based w. ρ-approx. by us

NG-DBSCAN [23] graph-based open source3

RP-DBSCAN proposed algorithm by us

point p if the distance between them is within ε (Lines 18–23). In
summary, the points that satisfy either of the conditions in Lemma

3.5 are assigned to a certain cluster. For example, in Figure 10c, the

solid points are assigned to either C1 or C2 whereas the hollow

points are categorized as outliers.

7 EVALUATION

Our evaluation was conducted to support the followings:

• RP-DBSCAN is much faster than the-state-of-the-art algo-

rithms (Sections 7.2 and 7.3).

• RP-DBSCAN is scalable to the number of cores (Section 7.4)

and the data size (Appendix B).

• RP-DBSCAN is accurate with negligible error (Section 7.5).

• The techniques in RP-DBSCAN are very effective (Section 7.6).

7.1 Experiment Setting

7.1.1 Algorithms. We compared our RP-DBSCAN algorithm

with not only the original DBSCAN algorithm but also five parallel

DBSCAN algorithms, as in Table 2. The original algorithm [10]

was used only for retrieving the correct clustering to validate the

approximation accuracy of RP-DBSCAN. The five existing parallel

algorithms were used for measuring the clustering performance to

show the superior performance of RP-DBSCAN.

The existing parallel algorithms in Table 2 adopt the region

split strategy except NG-DBSCAN. ESP-DBSCAN implements RDD-

DBSCAN [7] based on even-split partitioning. RBP-DBSCAN imple-

ments DBSCAN-MR [8] based on reduced-boundary partitioning.

SPARK-DBSCAN and CBP-DBSCAN implement MR-DBSCAN [18]

based on cost-based partitioning. For these algorithms, we rename

them to clearly indicate the partitioning strategy instead of using

their original names. NG-DBSCAN [23] adopts the vertex-centric

approach [26] as discussed in Section 2.

7.1.2 Implementation. We used open source implementations

if available or our own implementations4 otherwise. Using our

own implementations, we tried our best to eliminate the differ-

ence caused by implementation skills. Especially, for fair compar-

ison with RP-DBSCAN which uses a cell-based approximation

technique, we implemented ρ-approximate DBSCAN [11] in ESP-

DBSCAN, RBP-DBSCAN, and CBP-DBSCAN despite that their orig-

inal papers used the original DBSCAN [10]. Thus, CBP-DBSCAN

is much faster than SPARK-DBSCAN although both of them are

commonly based on MR-DBSCAN. Apache Spark API [3] was used

for implementing all six parallel algorithms. More specifically, the

2https://github.com/alitouka/spark_dbscan/
3https://github.com/alessandrolulli/gdbscan/
4All the source code is on https://github.com/kaist-dmlab/RP-DBSCAN.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1181

Table 3: Real-world data sets used for experiments.

Data Set # Object # Dim Size Type

GeoLife [38] 24,876,978 3 808MB float

Cosmo50 [22] 315,086,245 3 11.2 GB float

OpenStreetMap [16] 2,770,238,904 2 77.1 GB float

TeraClickLog [31] 4,373,472,329 13 362GB float

Scala API was used for the open source implementations, and the

Java API was used for our own implementations. There is no con-

sequence caused by the difference in programming languages of

Apache Spark API because the program code in Scala is translated

to Java class files.

7.1.3 Data Sets. The real-world data sets used for experiments

are summarized in Table 3. GeoLife5 contains user location data,

Cosmo506 contains simulation data, OpenStreetMap7 contains GPS

data, and TeraClickLog8 contains click log data. GeoLife is heavily

skewed because a large proportion of users stayed in Beijing while

a small proportion of users were widely distributed in more than 30

cities in China or other countries [38]. TeraClickLog is large enough

not to fit in main memory. All these data sets are numerical, and

the Euclidean distance was used for them.

We additionally used small synthetic data sets known as Moons,

Blobs, and Chameleon which the original DBSCAN algorithm can

handle. Each of them contains 100,000 points. They have been

widely used to compare the accuracy of clustering algorithms [20,

23] so we use them for the same purpose only in Section 7.5.

7.1.4 Algorithm Parameter. Regarding ε , for each data set, we

empirically found a value that generated around ten clusters, and

then used 1/8, 1/4, and 1/2 of the value as well as itself. Regarding

minPts , because it is less sensitive than ε , we simply set it to be a

constant value, 100, as in other studies [11, 14, 30]. Besides, regard-

ing ρ which is used in ρ-approximate DBSCAN and the two-level

cell dictionary, we used 0.10, 0.05, and 0.01, and a default value was

set to be 0.01 since we achieved 100% DBSCAN-equivalent clus-

tering with the value. For NG-DBSCAN, a few algorithm-specific

parameters were introduced, and we used the default values con-

figured in its open source implementation.

7.1.5 Evaluation Metrics. To measure clustering efficiency in

Sections 7.2 and 7.4, we used the elapsed time for each job or task

obtained from the Spark counter. If an algorithm did not terminate

within 20,000 seconds, we stopped executing the algorithm. In

order to get reliable results, we repeated every test by five times

and reported the average.

To measure clustering accuracy in Section 7.5, we used the Rand

index [29] which is a well-known measure of the similarity between

two sets of clustering. The Rand index has a value between 0 and 1,

where 0 indicates that the two sets of clustering do not match in all

pairs of points, and 1 indicates that the sets are exactly the same.

7.1.6 Configuration. We conducted experiments on 12 Mi-

crosoft Azure D12v2 instances located in South Korea. Each in-

stance has four cores, 28GB of RAM, and 200GB of disk (SSD).

5http://www.microsoft.com/en-us/download/
6http://nuage.cs.washington.edu/benchmark/astro-nbody/
7http://blog.openstreetmap.org/2012/04/01/bulk-gps-point-data/
8http://labs.criteo.com/downloads/download-terabyte-click-logs/

All instances run on Ubuntu 16.04.3 LTS. We used Spark 2.1.0 for

distributed parallel processing. Ten out of 12 instances were used

as worker nodes, and the remaining two instances were used as

master nodes. The Java applications run on JDK 1.8.0_131.

7.2 Efficiency

7.2.1 Overall Comparison. Figure 11 shows the total elapsed

time of the six parallel algorithms for the four data sets as ε varies.
The logarithmic scale is used for each figure. (See Table 6 in Appen-

dix A for the tabular form of the results.)

• RP-DBSCAN was shown to be always the fastest. The elapsed

time of RP-DBSCAN improved as ε increased because a two-

level cell dictionary became more compact owing to a larger

size of a (sub-)cell.

• ESP-DBSCAN, RBP-DBSCAN, and CBP-DBSCAN were much

less efficient than RP-DBSCAN, though ρ-approximate DB-

SCANwas incorporated into them. Their elapsed time got worse

as ε increased because of high load imbalance and data duplica-

tion, which will be elaborated in the next section.

• SPARK-DBSCAN and NG-DBSCAN did not finish in 20,000 sec-

onds for almost all test cases. Neither of these two algorithms

adopted cell-based approximation. Thus, we observe that it is

infeasible to exclude an approximation technique to deal with

large-scale data sets.

• Notably, for the largest data set of Figure 11d, none of the algo-

rithms except ours finished in the time limit.

In summary, it was observed that RP-DBSCAN outperformed

NG-DBSCAN by 165–180 times (Figure 11a); ESP-DBSCAN by 7.64–

24.4, 1.94–4.88, and 3.22–12.6 times (Figure 11a–11c, respectively);

RBP-DBSCAN by 4.33–16.7, 1.50–4.07, and 2.70–12.4 times (Figure

11a–11c, respectively); CBP-DBSCAN by 5.17–16.0, 1.75–6.85, and

3.18–12.1 times (Figure 11a–11c, respectively).

7.2.2 Breakdown of RP-DBSCAN. Figure 12 shows the break-

down of the total elapsed time of RP-DBSCAN into the three

phases in Algorithm 1. We observe that Phase I (data partitioning)

and Phase III (cell graph merging) took only a small portion: 20–35%

for Phase I and 4–35% for Phase III. Phase II (cell graph construction)

that performs local clustering for each partition in parallel took

the largest portion (31–68%), and its portion became larger with a

larger data set. Thus, the breakdown profile indicates that the par-

allel processing of RP-DBSCAN comes at little additional cost for

pre-processing (Phase I) and post-processing (Phase III), especially

in large-scale data sets.

0.16 0.13 0.17 0.23
0.19

0.07 0.06
0.05

0.31 0.50
0.63

0.68
0.19

0.25
0.12 0.030.16

0.05 0.03 0.01

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Data Set

Phase I-1 Phase I-2 Phase II Phase III-1 Phase III-2

GeoLife Cosmo50 OpenStreetMap TeraClickLog

Figure 12: Breakdown of RP-DBSCAN elapsed time.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1182

: SPARK : NG : ESP : RBP : CBP : RP-DBSCAN

20 40 80 160
24

27

210

213

ε

E
la
p
se
d
ti
m
e(
s)

(a) GeoLife.

0.01 0.02 0.04 0.08
27

29

211

213

ε
(b) Cosmo50.

0.01 0.02 0.04 0.08
29

211

213

215

ε
(c) OpenStreetMap.

1500 3000 6000 12000
210

212

214

216

ε
(d) TeraClickLog.

Figure 11: Total elapsed time of the parallel DBSCAN algorithms.

20 40 80 160

1

250

500

750

ε

L
o
ad

im
b
al
an
ce

(a) GeoLife.

0.01 0.02 0.04 0.08

1

4

7

10

ε
(b) Cosmo50.

0.01 0.02 0.04

1

4

7

10

ε
(c) OpenStreetMap.

1500 3000 6000 12000

1

4

7

10

ε
(d) TeraClickLog.

Figure 13: Load imbalance of local clustering in the parallel DBSCAN algorithms.

20 40 80 160
0

0.5

1

1.5

2
·108

ε

N
u
m
b
er

o
f
p
o
in
ts

(a) GeoLife.

0.01 0.02 0.04 0.08
0

0.5

1

1.5

2
·109

ε
(b) Cosmo50.

0.01 0.02 0.04 0.08
0

0.3

0.6

0.9

1.2
·1010

ε
(c) OpenStreetMap.

1500 3000 6000 12000
0

0.5

1

1.5

2
·1010

ε
(d) TeraClickLog.

Figure 14: Total number of points processed in the parallel DBSCAN algorithms.

7.3 Efficiency Details

We contend that this superior efficiency of RP-DBSCAN is mainly

attributed to the data split strategy. Hence, in this section, we com-

pare the two data split strategies in Figure 1 in the perspective of

(1) load imbalance and (2) data duplication.

7.3.1 Load Imbalance. Figure 13 shows the load imbalance of

the parallel algorithms as ε varies. Load imbalance is defined as the

ratio of the elapsed time for the slowest split to that for the fastest

split during parallel local clustering. Thus, the value 1 indicates per-

fect balance among splits. Overall, RP-DBSCAN that uses pseudo

random partitioning achieved nearly perfect load balance regardless

of the value of ε . In contrast, the three existing algorithms based

on the region split strategy failed to achieve good load balance; the

degree of load imbalance tended to increase as ε increased with

larger data duplication. Among the three algorithms, CBP-DBSCAN

showed load imbalance lower than the others because it considers

the number and distribution of data points altogether. However,

in a heavily skewed data set such as Figure 13a, any region split

strategy led to very high load imbalance as opposed to the random

split strategy; the load imbalance of RP-DBSCAN was only 1.44

as low as 0.24% of RBP-DBSCAN when ε = 160 in Figure 13a. See

Appendix B.2 for the detailed investigation on data skewness.

7.3.2 Data Duplication. Figure 14 shows the degree of data du-

plication among data splits in the parallel algorithms as ε varies.
Data duplication is quantified by the number of data points in the

union of those processed for each split. Overall, RP-DBSCAN pro-

cessed the smallest number of points in total regardless of the value

of ε . Here, this total number is always equal to the number of points

in the data set owing to pseudo random partitioning. In contrast,

many points in overlapping regions were duplicated for the existing

algorithms. For example, ESP-DBSCAN and CBP-DBSCAN pro-

cessed more points by 7.34 and 6.33 times, respectively, compared

with RP-DBSCAN when ε = 20 in Figure 14a. Among the three

algorithms, RBP-DBSCAN duplicated points less than the others

because its goal is to reduce overlapping regions between splits. In

Figures 14b and 14c, the degree of data duplication increased as ε
increased because the overlapping regions were enlarged. However,

in a heavily skewed data set such as Figure 14a, an opposite trend

was observed, because the very dense region (i.e., Beijing) became

fully contained in a single split after ε exceeded a certain value.

7.4 Scalability

Figure 15 presents the result of scalability test as the number of CPU

cores varies from 5 to 40 for parallel algorithms. The results were

obtained for the Cosmo50 data set with ε = 0.02. Speed-up is defined

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1183

5 10 20 40

1

2

3

4

5

Number of cores

Sp
ee
d
-u
p

SPARK-DBSCAN

NG-DBSCAN

ESP-DBSCAN

RBP-DBSCAN

CBP-DBSCAN

RP-DBSCAN

Figure 15: Scalability to the number of cores.

(a) Moons. (b) Blobs. (c) Chameleon.

Figure 16: Clustering results of RP-DBSCAN for synthetic

data sets (best viewed in color).

Table 4: Accuracy of RP-DBSCAN in the Rand index.

Data Set

ρ
0.10 0.05 0.01

Moons [23] 1.00 1.00 1.00

Blobs [23] 1.00 1.00 1.00

Chameleon [20] 0.98 0.99 1.00

by the ratio of the elapsed time with only five cores to that with > 5

cores. The speed-up of RP-DBSCAN was 4.40 when the number

of cores increased from 5 to 40 by 8 times, thereby showing good

scalability. Besides, the scalability of ESP-DBSCAN, RBP-DBSCAN

and CBP-DBSCAN was 2.88–3.19. Meanwhile, we showed that RP-

DBSCAN was also scalable to the data size in Figure 20 (Appendix

B.3), achieving near-linear scalability. Therefore, we conclude that

RP-DBSCAN is sufficiently scalable to both the number of cores

and the size of data.

7.5 Approximation Accuracy

We ran the original DBSCAN algorithm and RP-DBSCAN against

small data sets to confirm that our algorithm produces the clustering

equivalent to that of DBSCAN. Figure 16 presents the clustering

results of RP-DBSCAN, which look correct. Table 4 reports the

Rand index between the clustering of DBSCAN and that of RP-

DBSCAN for the different values of ρ. RP-DBSCAN obtained

practically the same clustering as DBSCAN for the three synthetic

data sets, considering that the Rand index was over 0.98 even with

a large value of ρ (i.e., high approximation). In particular, when

ρ = 0.01, RP-DBSCAN achieved perfectly the same clustering as

DBSCAN so we used it as the default value.

7.6 Anatomy of RP-DBSCAN

7.6.1 Cell Dictionary Building. Table 5 shows the size of the

two-level cell dictionary for the four data sets as ε varies. Here, ε10
denotes the value that generated around ten clusters in each data set.

A dictionary size is represented as a ratio with respect to the data

size. Overall, the two-level cell dictionary is very compact, ranging

from 0.04% to 8.20% of the data. This compact size is due to the

Table 5: Size of the two-level cell dictionary.

Data Set

ε
1/8 · ε10 1/4 · ε10 1/2 · ε10 ε10

GeoLife 0.27% 0.18% 0.11% 0.07%

Cosmo50 8.20% 7.52% 7.06% 5.71%

OpenStreetMap 1.83% 1.03% 0.56% 0.30%

TeraClickLog 0.93% 0.41% 0.14% 0.04%

0 1 2 3 4 5
0

1

2

3

4

·108

Round

N
u
m
b
er

o
f
ed
g
es RP-DBSCAN

(a) ε = 1500.

0 1 2 3 4 5
0

2

4

6

8

·107

Round

RP-DBSCAN

(b) ε = 3000.

Figure 17: Number of the edges remaining after each round.

design that only two levels are maintained and local positions are

stored for sub-cells. In addition, disregarding the heavily-skewed

GeoLife data set, the relative size of the dictionary became smaller

as a data set got larger.

7.6.2 Progressive Graph Merging. Figure 17 shows the number

of the edges remaining after the i-th round completes for the Ter-

aClickLog data set. Since the cell subgraphs were obtained from 40

splits running on 40 cores, the tournament consisted of five rounds.

Round 0 indicates the total number of edges before the tournament

starts, which is the sum of the sizes of all cell subgraphs. We note

that, for large-scale data sets, it is infeasible to merge cell subgraphs

in a single machine because of too many edges. For example, there

were 440 and 83.3 million edges at the beginning in Figures 17a and

17b, respectively. The numbers were significantly reduced to 94.6

and 24.8 millions even after the first round and further to 2.53 and

1.14 millions after the fifth round. Therefore, a single merger of cell

subgraphs was done in a single machine at the end. (See Table 7 in

Appendix A for the other data sets.)

8 CONCLUSION

In this paper, we proposed to adopt the random split strategy for

running DBSCAN in parallel. Toward this goal, we proposed a cell-

based data split strategy, pseudo random partitioning, which has the

advantages of both the region split and random split strategies. To

enable us to perform region queries on a random split, we designed

a highly compact summary of the entire data set, the two-level

cell dictionary. Putting them all together, we developed a superfast

parallel DBSCAN algorithm, RP-DBSCAN. As verified by thorough

experiments using large-scale data sets on a cluster of 12 Microsoft

Azure machines, RP-DBSCAN achieved almost perfect load balance

among data splits in local clustering and did not duplicate points

among them. Therefore, RP-DBSCAN dramatically outperformed

the state-of-the-art parallel DBSCAN algorithms by up to 180 times.

Furthermore, only RP-DBSCAN could handle the largest 362GB

data set whereas the other algorithms could not. Overall, we believe

that our work has significantly raised the usability of the DBSCAN

algorithm in the era of big data.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1184

REFERENCES
[1] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato

Ferreira, and Leonardo Rocha. 2013. G-DBSCAN: A GPU Accelerated Algorithm
for Density-based Clustering. Procedia Computer Science 18 (2013), 369–378.

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.
OPTICS: Ordering Points to Identify the Clustering Structure. In Proc. 1999 ACM
SIGMOD Int’l Conf. on Management of Data. 49–60.

[3] Apache. 2017. Spark API Documentation. https://spark.apache.org/docs/2.1.0/
api.html. (2017). Accessed: 2017-10-31.

[4] Domenica Arlia and Massimo Coppola. 2001. Experiments in Parallel Clustering
with DBSCAN. In Proc. 7th European Conf. on Parallel Processing. 326–331.

[5] Marsha J. Berger and Shahid H. Bokhari. 1987. A Partitioning Strategy for
Nonuniform Problems on Multiprocessors. IEEE Trans. on Computers C-36, 5
(1987), 570–580.

[6] Chun-Chieh Chen and Ming-Syan Chen. 2015. HiClus: Highly Scalable Density-
based Clustering with Heterogeneous Cloud. Procedia Computer Science 53 (2015),
149–157.

[7] Irving Cordova and Teng-Sheng Moh. 2015. DBSCAN on Resilient Distributed
Datasets. In Proc. 2015 Int’l Conf. on High Performance Computing & Simulation.
531–540.

[8] Bi-Ru Dai and I-Chang Lin. 2012. Efficient Map/Reduce-Based DBSCAN Al-
gorithm with Optimized Data Partition. In Proc. 2012 IEEE Int’l Conf. on Cloud
Computing. 59–66.

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proc. 6th Sympo. on Operating System Design and
Implementation. 137–150.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proc. 2nd Int’l Conf. on Knowledge Discovery and Data Mining. 226–231.

[11] Junhao Gan and Yufei Tao. 2015. DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation. In Proc. 2015 ACM SIGMOD Int’l Conf. on Management of
Data. 519–530.

[12] Junhao Gan and Yufei Tao. 2017. Dynamic Density Based Clustering. In Proc.
2017 ACM SIGMOD Int’l Conf. on Management of Data. 1493–1507.

[13] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: Highly
Parallel DBSCAN. In Proc. Workshop on Machine Learning in High-Performance
Computing Environments. 2:1–2:10.

[14] Poonam Goyal, Sonal Kumari, Dhruv Kumar, Sundar Balasubramaniam, Navneet
Goyal, Saiyedul Islam, and Jagat Sesh Challa. 2015. Parallelizing OPTICS for
Commodity Clusters. In Proc. 2015 Int’l Conf. on Distributed Computing and
Networking. 33.

[15] Ade Gunawan. 2013. A Faster Algorithm for DBSCAN. Master’s thesis. Eindhoven
University of Technology, the Netherlands.

[16] Mordechai Haklay and Patrick Weber. 2008. OpenStreetMap: User-Generated
Street Maps. IEEE Pervasive Computing 7, 4 (2008), 12–18.

[17] Dianwei Han, Ankit Agrawal, Wei-Keng Liao, and Alok Choudhary. 2016. A
Novel Scalable DBSCAN Algorithm with Spark. In Proc. 2016 IEEE Int’l Sympo.
on Parallel and Distributed Processing. 1393–1402.

[18] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. 2014.
MR-DBSCAN: A Scalable MapReduce-based DBSCAN Algorithm for Heavily
Skewed Data. Frontiers of Computer Science 8, 1 (2014), 83–99.

[19] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. 2004. Scalable Density-
Based Distributed Clustering. Proc. 8th European Conf. on Principles of Data
Mining and Knowledge Discovery (2004), 231–244.

[20] George Karypis, Eui-Hong Han, and Vipin Kumar. 1999. Chameleon: Hierarchical
Clustering Using Dynamic Modeling. Computer 32, 8 (1999), 68–75.

[21] Dexter C. Kozen. 2012. The Design and Analysis of Algorithms. Springer Science
& Business Media.

[22] YongChul Kwon, Dylan Nunley, Jeffrey P. Gardner, Magdalena Balazinska, Bill
Howe, and Sarah Loebman. 2010. Scalable Clustering Algorithm for N-body
Simulations in a Shared-Nothing Cluster. In Proc. 22nd Int’l Conf. on Scientific
and Statistical Database Management. 132–150.

[23] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. 2016.
NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data. Proceedings
of the VLDB Endowment 10, 3 (2016), 157–168.

[24] Guangchun Luo, Xiaoyu Luo, Thomas Fairley Gooch, Ling Tian, and Ke Qin.
2016. A Parallel DBSCAN Algorithm Based on Spark. In Proc. 2016 IEEE Int’l
Conf. on Big Data and Cloud Computing. 548–553.

[25] Son T. Mai, Ira Assent, and Martin Storgaard. 2016. AnyDBC: An Efficient
Anytime Density-based Clustering Algorithm for Very Large Complex Datasets.
In Proc. 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining.
1025–1034.

[26] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like
a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing. Comput. Surveys 48, 2 (2015), 25.

[27] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-Keng Liao, Fredrik
Manne, and Alok Choudhary. 2012. A New Scalable Parallel DBSCAN Algorithm

Using the Disjoint-Set Data Structure. In Proc. 2012 Int’l Conf. on High Performance
Computing, Networking, Storage and Analysis. 62:1–62:11.

[28] Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Fredrik Manne,
Salman Habib, and Pradeep Dubey. 2014. PARDICLE: Parallel Approximate
Density-based Clustering. In Proc. 2014 Int’l Conf. on High Performance Computing,
Networking, Storage and Analysis. 560–571.

[29] William M. Rand. 1971. Objective Criteria for the Evaluation of Clustering
Methods. J. Amer. Statist. Assoc. 66, 336 (1971), 846–850.

[30] Tatsuhiro Sakai, Keiichi Tamura, and Hajime Kitakami. 2017. Cell-Based DBSCAN
Algorithm Using Minimum Bounding Rectangle Criteria. In Proc. 2017 Int’l Conf.
on Database Systems for Advanced Applications. 133–144.

[31] Hwanjun Song, Jae-Gil Lee, and Wook-Shin Han. 2017. PAMAE: Parallel k-
Medoids Clustering with High Accuracy and Efficiency. In Proc. 23rd ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 1087–1096.

[32] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. on
Mathematical Software 11, 1 (1985), 37–57.

[33] Larry Wasserman. 2013. All of Statistics: A Concise Course in Statistical Inference.
Springer Science & Business Media.

[34] Benjamin Welton, Evan Samanas, and Barton P. Miller. 2013. Mr. Scan: Extreme
Scale Density-Based Clustering Using a Tree-Based Network of GPGPU Nodes.
In Proc. 2013 Int’l Conf. on High Performance Computing, Networking, Storage and
Analysis. 84:1–84:11.

[35] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. 1999. A Fast Parallel Clustering
Algorithm for Large Spatial Databases. Data Mining and Knowledge Discovery 3,
3 (1999), 263–290.

[36] Yanwei Yu, Jindong Zhao, Xiaodong Wang, Qin Wang, and Yonggang Zhang.
2015. Cludoop: An Efficient Distributed Density-Based Clustering for Big Data
Using Hadoop. International Journal of Distributed Sensor Networks 2015 (2015),
1–13.

[37] Weizhong Zhao, Huifang Ma, and Qing He. 2009. Parallel K-Means Clustering
Based on MapReduce. In Proc. 1st Int’l Conf. on Cloud Computing. 674–679.

[38] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning Transportation
Mode from Raw GPS Data for Geographic Applications on the Web. In Proc. 17th
Int’l Conf. on World Wide Web. 247–256.

A DETAILED EXPERIMENT RESULTS

We include Table 6 that shows the total elapsed time in Figure 11

in a tabular form as well as Table 7 that shows the effect of edge

reduction in all data sets.

B SUPPLEMENTARY EVALUATION

Using synthetic data sets, we investigate the trends of RP-DBSCAN

while varying data skewness and data size.

B.1 Synthetic Data Generation

We sampled data points from the Gaussian mixture composed of

ten multivariate Gaussian distributions, each of which is defined by

a mean vector and a covariance matrix Σ. Since the range of values
on each dimension was [0, 100], each element of a mean vector was

randomly chosen from that range.

Data Skewness: The covariance matrix was indirectly determined

by setting the inverse covariance matrix Σ−1, which was set to be

a diagonal matrix αI where α is a positive scalar value and I is an
identity matrix. The diagonal elements of Σ−1 indicate how tightly

clustered the variables are around the mean [33]. That is, the higher

the diagonal elements are, the tighter the variable are clustered.

Since α determines the values of the diagonal elements, it represents

the degree of data skewness, which we call the skewness coefficient.

Figure 18 shows the 2-dimensional synthetic data sets generated

by different skewness coefficients: α ∈ {1/8, 1/4, 1/2, 1}. The data
points are more tightly concentrated around the mean as α gets

larger. These procedures were repeated for three different numbers

of dimensions: 3, 4, and 5.

Data Size: The number of data points was determined to make

a data set of 20GB by default. Furthermore, the data sets of five

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1185

Table 6: Total elapsed time of the parallel DBSCAN algorithms in Figure 11 (seconds).
Data Set (a) GeoLife (b) Cosmo50 (c) OpenStreetMap (d) TeraClickLog

ε 20 40 80 160 0.01 0.02 0.04 0.08 0.01 0.02 0.04 0.08 1500 3000 6000 12000

SPARK-DBSCAN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

NG-DBSCAN 5952 5712 5046 4446 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ESP-DBSCAN 306 252 588 660 1860 1020 1680 2110 9660 11760 15120 N/A N/A N/A N/A N/A

RBP-DBSCAN 156 210 330 450 1440 840 1320 1760 8100 8640 9300 10380 N/A N/A N/A N/A

CBP-DBSCAN 186 180 312 432 1680 980 1500 2960 9540 11400 14460 N/A N/A N/A N/A N/A

RP-DBSCAN 36 33 28 27 960 504 438 432 3000 1720 1200 840 15480 7200 3540 1680

Table 7: Number of the edges after each round of the tournament in Phase III.
Data Set (a) GeoLife (b) Cosmo50 (c) OpenStreetMap (d) TeraClickLog

ε 20 40 80 160 0.01 0.02 0.04 0.08 0.01 0.02 0.04 0.08 1500 3000 6000 12000

Round 0 1.87·105 6.95·104 1.83·104 6.80·103 3.39·108 6.34·107 8.44·106 1.07·106 5.27·107 2.66·107 1.24·107 5.61·106 4.40·108 8.33·107 1.31·107 2.62 ·106
Round 1 1.49·105 6.14·104 1.69·104 6.36·103 1.03·108 1.34·107 1.67·106 2.38·105 4.89·107 2.46·107 1.15·107 5.15·106 9.46·107 2.48·107 5.55·106 9.71 ·105
Round 2 9.87·104 4.43·104 1.36·104 5.38·103 5.18·107 6.69·106 8.37·105 1.19·105 4.13·107 2.04·107 9.42·106 4.19·106 1.36·107 7.15·106 1.68·105 2.73 ·105
Round 3 5.70·104 2.58·104 8.83·103 3.71·103 2.60·107 3.36·106 4.20·105 6.00·104 2.85·107 1.39·107 6.33·106 2.77·106 7.58·106 3.63·106 8.52·105 1.47 ·105
Round 4 2.66·104 1.17·104 4.21·103 1.92·103 1.05·107 1.36·106 1.70·105 2.43·104 1.41·107 6.77·106 3.02·106 1.30·106 4.55·106 1.97·106 4.57·105 8.33 ·104
Round 5 1.55·104 6.62·103 2.35·103 1.04·103 5.27·106 6.81·105 8.52·104 1.22·104 7.74·106 3.63·106 1.60·106 6.81·105 2.53·106 1.14·106 2.59·105 4.05 ·104

(a) α = 1/8. (b) α = 1/4. (c) α = 1/2. (d) α = 1.

Figure 18: Four 2D synthetic data sets.

Table 8: Size of the two-level cell dictionary for the synthetic

data sets.

Dim

α
1/8 1/4 1/2 1

3 404MB 224MB 116MB 56.4MB

4 1.34GB 1.18GB 999MB 796MB

5 1.51GB 1.48GB 1.44GB 1.36GB

1/8 1/4 1/2 1

1

1.5

2

2.5

3

Skewness coefficient α

L
o
ad

im
b
al
an
ce

3D 4D 5D

(a) Load imbalance.

1/8 1/4 1/2 1
0

1,000

2,000

3,000

4,000

5,000

Skewness coefficient α

E
la
p
se
d
ti
m
e(
s)

(b) Total elapsed time.

Figure 19: Impact of data skewness in RP-DBSCAN.

different sizes, 5 GB, 10 GB, 20GB, 40GB, and 80GB, were generated

with fixing data dimensionality to be 5 and α to be 8.

DBSCANParameters: For these data sets, ε was set to be 5,minPts
was set to be 100, and ρ was set to be 0.01.

B.2 Varying Data Skewness

Table 8 shows the size of the two-level cell dictionary for the syn-

thetic data sets generated with varying data skewness and data

dimensionality. The size became smaller as data skewness increased

(i.e., the skewness coefficient α increased) because of a smaller num-

ber of nonempty (sub-)cells or as data dimensionality decreased

because of a smaller number of all possible (sub-)cells.

Figure 19a shows the load imbalance of RP-DBSCAN for these

synthetic data sets. The load imbalance gradually increased as data

skewness increased regardless of data dimensionality. The load

imbalance increased from 1.33 to 1.47 by 1.11 times in 3D, from

1.23 to 2.12 by 1.72 times in 4D, and from 1.14 to 2.17 by 1.90 times

in 5D. Then, Figure 19b shows the total elapsed time of RP-DBSCAN.

In general, as the data skewness increased, the total elapsed time

increased because of a higher load imbalance. However, an opposite

trend was observed in the 3D data sets since the size of the two-level

cell dictionary was reduced so much to offset the slightly increased

load imbalance.

B.3 Varying Data Size

Figure 20 shows the total elapsed time of RP-DBSCAN for the

synthetic data sets generated with varying data size. The elapsed

time increased almost linearly—by 15.2 times while the data size

increased from 5GB to 80GB by 16 times. Figure 21 represents the

breakdown of the total elapsed time in Figure 20 into the three

phases of Algorithm 1. Phase II took the largest proportion of the

execution time, and the proportion increased up to 80% when the

data size increased. In contrast, Phase I (pre-processing) and Phase

III (post-processing) took only 13–17% and 6–20%, respectively.

5 10 20 40 80
0

2,500

5,000

7,500

10,000

Data size(GB)

E
la
p
se
d
ti
m
e(
s) 5D (α = 8)

Figure 20: Scalability of RP-DBSCAN to the data size.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1186

0.05 0.05 0.07 0.06 0.04
0.08 0.08 0.10 0.10 0.09

0.70 0.66
0.74 0.78 0.80

0.16 0.19 0.08 0.05 0.05
0.01 0.01 0.01 0.02 0.01

0.0

0.2

0.4

0.6

0.8

1.0

5 10 20 40 80

Pr
op

or
tio

n

Data Size(GB)

Phase I-1 Phase I-2 Phase II Phase III-1 Phase III-2

Figure 21: Elapsed time breakdown for different data sizes.

ACKNOWLEDGMENTS

This work was partly supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea govern-

ment (Ministry of Science and ICT) (No. 2017R1E1A1A01075927)

and the MOLIT (The Ministry of Land, Infrastructure and Trans-

port), Korea, under the national spatial information research pro-

gram supervised by the KAIA (Korea Agency for Infrastructure

Technology Advancement) (18NSIP-B081011-05). Also, this project

was supported by Microsoft Research through “Azure for Research”

global RFP program.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1187

