
The VLDB Journal (2008) 17:1485–1507
DOI 10.1007/s00778-007-0082-x

REGULAR PAPER

Structural optimization of a full-text n-gram index
using relational normalization

Min-Soo Kim · Kyu-Young Whang · Jae-Gil Lee ·
Min-Jae Lee

Received: 24 May 2006 / Revised: 11 July 2007 / Accepted: 13 August 2007 / Published online: 13 December 2007
© Springer-Verlag 2007

Abstract As the amount of text data grows explosively, an
efficient index structure for large text databases becomes ever
important. The n-gram inverted index (simply, the n-gram
index) has been widely used in information retrieval or in
approximate string matching due to its two major advanta-
ges: language-neutral and error-tolerant. Nevertheless, the
n-gram index also has drawbacks: the size tends to be very
large, and the performance of queries tends to be bad. In this
paper, we propose the two-level n-gram inverted index (sim-
ply, the n-gram/2L index) that significantly reduces the size
and improves the query performance by using the relational
normalization theory. We first identify that, in the (full-text)
n-gram index, there exists redundancy in the position infor-
mation caused by a non-trivial multivalued dependency. The
proposed index eliminates such redundancy by constructing
the index in two levels: the front-end index and the back-end
index. We formally prove that this two-level construction
is identical to the relational normalization process. We call
this process structural optimization of the n-gram index. The
n-gram/2L index has excellent properties: (1) it significantly
reduces the size and improves the performance compared
with the n-gram index with these improvements becoming
more marked as the database size gets larger; (2) the query
processing time increases only very slightly as the query

M.-S. Kim (B) · K.-Y. Whang · J.-G. Lee · M.-J. Lee
Department of Computer Science, Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea
e-mail: mskim@mozart.kaist.ac.kr

K.-Y. Whang
e-mail: kywhang@mozart.kaist.ac.kr

J.-G. Lee
e-mail: jglee@mozart.kaist.ac.kr

M.-J. Lee
e-mail: mjlee@mozart.kaist.ac.kr

length gets longer. Experimental results using real databases
of 1 GB show that the size of the n-gram/2L index is reduced
by up to 1.9–2.4 times and, at the same time, the query per-
formance is improved by up to 13.1 times compared with
those of the n-gram index. We also compare the n-gram/2L
index with Makinen’s compact suffix array (CSA) (Proc. 11th
Annual Symposium on Combinatorial Pattern Matching,
pp. 305–319, 2000) stored in disk. Experimental results show
that the n-gram/2L index outperforms the CSA when the
query length is short (i.e., less than 15–20), and the CSA is
similar to or better than the n-gram/2L index when the query
length is long (i.e., more than 15–20).

Keywords Text search · Inverted index · n-gram ·
Multivalued dependency

1 Introduction

As the amount of text data (e.g., web pages and biological
sequences) grows explosively, text searching has become one
of the most important technologies. For efficient text search-
ing, a number of index structures have been proposed. Among
them, the inverted index, which is inherently the disk-based
index structure, is the most actively used one for large dat-
abases [3,34].

The inverted index uses words or n-grams as indexing
terms [32]. We call the inverted index using n-grams as the
n-gram index. An n-gram is a fixed-length string without
linguistic meaning. The n-grams are extracted by sliding a
window of length n by one character in the text and recording
a sequence of characters in the window at each time. We call
it the 1-sliding technique.

The n-gram index has two major advantages—language-
neutral and error-tolerant—since terms are extracted by

123

1486 M.-S. Kim et al.

1-sliding technique [3,18,20]. The first advantage allows us
to disregard the characteristics of the language. Thus, the
n-gram index is widely used for Asian languages, where
complex linguistic knowledge is required for identifying
words, or for biological sequences, where a clear concept
of the word does not exist. The second advantage allows
us to retrieve documents with some errors (e.g., typos) as
the query result. Thus, the n-gram index is widely used for
approximate string matching.

Nevertheless, the n-gram index has also drawbacks: the
size tends to be large, and the performance of queries—
especially, long ones—tends to be bad [3,18]. These draw-
backs stem from a large volume of position information
of n-grams extracted by the 1-sliding technique. Here, the
position information represents the document identifier and
the offsets within the document where an n-gram occurs.
There have been a number of efforts to reduce the size of the
n-gram index. The compression of the inverted index is
widely employed [26,32]. However, this scheme requires
additional compression and decompression costs since it
compresses posting lists during indexing and decompresses
them during query processing. On the other hand, some meth-
ods have been proposed to extract n-grams sparsely [18,27].
However, this scheme lowers search accuracy since it reduces
the index size by omitting some position information.

In this paper, we propose the two-level n-gram inverted
index (simply, the n-gram/2L index) that significantly reduces
the size and improves the query performance by using the
relational normalization theory. We first identify that redun-
dancy in the position information exists in the (full-text)
n-gram index and that this is caused by a non-trivial multi-
valued dependency (MVD). Then, in order to eliminate such
redundancy, we construct the index in two levels—(1) the
front-end index and (2) the back-end index—in the same
way as we decompose the relation into two relations for nor-
malization. Here, the back-end index is constructed by using
subsequences extracted from documents, and the front-end
index constructed by using n-grams extracted from those
subsequences. Our method achieves the reduction of the size
and the improvement of the performance through structurally
reforming the index, i.e., replacing the original n-gram index
with two smaller ones. We note that there is no compression
of the posting lists or omission of position information. From
this point of view, we call our method structural optimization
of the n-gram index.

The n-gram/2L index has four excellent properties. First,
the size of the n-gram/2L index is scalable with the data-
base size. That is, compared with the conventional n-gram
index, the reduction of the index size becomes more marked
in a larger database. Second, the query performance of the
n-gram/2L index is also scalable with the database size. That
is, compared with the conventional one, the improvement of
the query performance becomes more marked in a larger

B+-Tree

on terms

posting lists of terms

a posting d, [o1, …, of]

d: document identifier

oi: offset where term t occurs in document d

f: frequency of occurrence of term t in document d

…

Fig. 1 The structure of the inverted index

database. Third, the query processing time increases at a
lower rate in the n-gram/2L index than in the n-gram index
as the query length gets longer. We investigate the reasons
for these desirable properties in Sect. 4.

The rest of this paper is organized as follows. Section 2
explains the n-gram inverted index. Section 3 proposes the
structure and algorithms of the n-gram/2L index. Section 4
presents the formal model of the n-gram/2L index and ana-
lyzes the size and query performance. Section 5 discusses
implementation of the n-gram/2L index. Section 6 presents
the results of performance evaluation. Section 7 describes
existing work related to the n-gram index. Section 8 summa-
rizes and concludes the paper.

2 Preliminary

In this section, we explain the inverted index and the n-gram
index. The inverted index is a term-oriented mechanism for
quickly searching documents containing a given term [3].
Here, a document is a finite sequence of characters, and a
term a subsequence of a document.

The inverted index consists of two major components:
terms and posting lists [32]. A posting list, which is related
to a specific term, is a list of postings that contain informa-
tion about the occurrences of the term. A posting consists
of the identifier of the document that contains the term and
the list of the offsets where the term occurs in the docu-
ment. For each term t , there is a posting list that contains
postings 〈d, [o1, . . . , o f]〉, where d is a document identifier,
[o1, . . . , o f] is a list of offsets o, and f is the frequency of
occurrence of the term t in the document d [26]. Postings
in a posting list are usually stored in the increasing order of
d, and offsets within a posting in the increasing order of o.
Besides, an index such as the B+-tree is created on terms
in order to quickly locate a posting list. Figure 1 shows the
structure of the inverted index.

123

Structural optimization of a full-text n-gram index 1487

The inverted index is classified into two types depend-
ing on the method of extracting terms: (1) the word-based
inverted index using a word as a term and (2) the n-gram
index using an n-gram as a term [15,20,32]. We focus on
the n-gram index in this paper. Let us consider a document d
as a sequence of characters c0, c1, . . . , cw−1. An n-gram is
a subsequence of length n. Extracting n-grams from a docu-
ment d can be done by using the 1-sliding technique, that is,
sliding a window of length n from c0 to cw−n and storing the
characters located in the window. The i th n-gram extracted
from d is the sequence ci , ci+1, . . . , ci+n−1.

Example 1 Figure 2 shows an example of the n-gram index.
Suppose n = 2. Figure 2a shows the set of documents.
Figure 2b shows the 2-gram index built from these docu-
ments. A 2-gram AB occurs in document 0 at the offset 0
and 5. Thus, in the posting list of the term AB, there is a
posting 〈0, [0, 5]〉 indicating AB occurs in document 0 at the
offset 0 and 5.

Query processing is done in two steps: (1) extracting
n-grams from a given query string and searching the post-
ing lists of those n-grams; and (2) performing merge join
between those posting lists using the document identifier as
the join attribute [3]. For exact-match queries, we are able
to improve the query performance by splitting a query string
into disjoint n-grams.

For example, suppose we execute a query “ABB” by using
the n-gram index in Fig. 2. In the first step, the two 2-grams
“AB” and “BB” are extracted from the query, and two post-
ing lists of those 2-grams are searched. In the second step,
merge join between those two posting lists is performed in
order to find the documents where the two 2-grams “AB”
and “BB” occur consecutively—constituting “ABB”. As the
query result, the document identifiers 0 and 2 are returned.

3 n-gram/2L index

3.1 Index structure

Figure 3 shows the structure of the n-gram/2L index, which
consists of the back-end index and the front-end index. The
back-end index stores the offsets of subsequences within doc-
uments, and the front-end index the offsets of n-grams within
subsequences. Here, subsequences have either fixed-length
or variable-length.

3.2 Index building algorithm

In this section, we present the algorithms for building the
n-gram/2L index. We present the basic index building algo-
rithm using fixed-length subsequences in Sect. 3.2.1 and
the enhanced index building algorithm using variable-length

subsequences in Sect. 3.2.2. Variable-length subsequences
allow us to reduce the size of the index and improve the query
performance compared with fixed-length subsequences.

3.2.1 Basic index building algorithm

The n-gram/2L index is built through the following four
steps: (1) extracting subsequences, (2) building the back-end
index, (3) extracting n-grams, and (4) building the front-end
index. When extracting subsequences, the length of subse-
quences is fixed to be m, and consecutive subsequences over-
lap with each other by n − 1. The purpose for this overlap is
to prevent missing or duplicating n-grams, i.e., we extract no
more or no less n-grams than is necessary. We formally prove
the correctness of this method in Theorem 1. Hereafter, we
call the subsequence of length m as the m-subsequence. The
m-subsequence starting from the character ci is the sequence
ci , ci+1, . . . , ci+m−1. We note that n denotes the length of the
n-gram, and m the length of the m-subsequence. We denote
the n-gram/2L index constructed with m-subsequences by
the n-gram/2L-m index.

Theorem 1 If m-subsequences are extracted such that con-
secutive ones overlap with each other by n − 1, no n-gram
is missed or duplicated.

Proof We prove the Theorem by showing that if there is an
n-gram duplicated or missed, consecutive m-subsequences
do not overlap with each other by n − 1.

Case 1: If there is an n-gram duplicated, i.e., an n-gram
belongs to two m-subsequences, those m-subsequences
should overlap with each other by at least n (Fig. 4b).

Case 2: If there is an n-gram missed, i.e., an n-gram belongs
to no m-subsequence, the last m-subsequence ending
with the previous n-gram and the first m-subsequence
starting with the next n-gram should overlap with each
other by less than n − 1 (Fig. 4b).

Thus, if m-subsequences are extracted such that they overlap
with each other by n − 1, no n-gram is missed or duplicated.

��
Figure 5 shows the basic algorithm for building

the n-gram/2L index. We call this algorithm Basic
n-Gram/2L Index Building. In Step 1, the algorithm extracts
m-subsequences from a set of documents such that they over-
lap with each other by n − 1. Suppose that a document
is the sequence of characters c0, c1, . . . , cw−1. The algo-
rithm extracts m-subsequences starting from the character
ci∗(m−n+1) for all i where 0 ≤ i < �w−n+1

m−n+1�. If the length
of the last m-subsequence is less than m, the algorithm pads
blank characters to the m-subsequence to guarantee the length
of m. In Step 2, the algorithm builds the back-end index

123

1488 M.-S. Kim et al.

2-grams posting lists of 2-grams

AB

BB

BC

CD

DA

DD

0, [0, 5] 1, [1, 5] 2, [2, 8] 3, [3, 7] 4, [2, 6] 5, [4, 8]

0, [1, 7] 1, [2, 6] 2, [4] 3, [0, 4, 8] 4, [3, 7] 5, [1, 5]

0, [2, 8] 1, [3, 7] 2, [0, 5] 3, [1, 5] 4, [4, 8] 5, [2, 6]

0, [4] 1, [0, 4, 8] 2, [1, 7] 3, [2, 6] 4, [1, 5] 5, [3, 7]

0, [3] 2, [6] 4, [0]

0, [6] 2, [3] 5, [0]

A B C D D A B B C D

D A B C D A B C D A

C D A B B C D D A B

B C D A B C D A B C

D D A B C D A B C D

B B C D A B C D A B

(a) A document collection.

document 0

document 1

document 2

document 3

document 4

document 5

(b) The 2-gram index.

0 1 2 8 9... ...5

Fig. 2 An example of the n-gram index

Fig. 3 The structure of the
n-gram/2L index

(a) The front-end index. (b) The back-end index.

…

B+-Tree on
n-grams

…

B+-Tree on
subsequences

a posting: s, [o1, …, of(s,g)]
a posting: d, [o1, …, of(d,s)]

posting lists
of n-grams

posting lists of
subsequences

frequency of occurrence
of n-gram g in subsequence sf(s,g):

offset where n-gram g
occurs in subsequence soi:

subsequence identifiers:

frequency of occurrence
of n-gram g in subsequence sf(s,g):

offset where n-gram g
occurs in subsequence soi:

subsequence identifiers:

frequency of occurrence
of subsequence s in document df(d,s):

offset where subsequence s
occurs in document doi:

document identifierd:

frequency of occurrence
of subsequence s in document df(d,s):

offset where subsequence s
occurs in document doi:

document identifierd:

(a) (b) (c)

Fig. 4 The cases where m-subsequences overlap with each other

using the m-subsequences obtained in Step 1. For each
m-subsequence s occurring f times in a document d at off-
sets o1, . . . , o f , a posting 〈d, [o1, . . . , o f]〉 is appended to
the posting list of s. In Step 3, the algorithm extracts n-grams
from the set of m-subsequences obtained in Step 1 by using
the 1-sliding technique. In Step 4, the algorithm builds the
front-end index using the n-grams obtained in Step 3. For
each n-gram g occurring f times in an m-subsequence v at

offsets o1, . . . , o f , a posting 〈v, [o1, . . . , o f]〉 is appended
to the posting list of g.

Example 2 Figure 6 shows an example of building the
n-gram/2L index. Suppose that n = 2 and m = 4. Figure 6a
shows the set of documents, which is the same set
of documents as is in Fig. 2a. Figure 6b shows the set of
the 4-subsequences extracted from the documents. Since

123

Structural optimization of a full-text n-gram index 1489

Algorithm Basic n-Gram/2L Index Building:

Input: (1) The document collection D, (2) The length m of subsequences , (3) The length n of n-grams

Output: The n-gram/2L index

Algorithm:

Step 1. Extraction of m-subsequences: for each document in D

1.1 Suppose that a document d is a sequence of characters c0,c1,...,cw-1 ;

extract m-subsequences ci*(m-n+1) ci*(m-n+1)+1 ... ci*(m-n+1)+m-1 (0 ≤ i < (w-n+1)/(m-n+1)) and

record the offsets of the m-subsequences within d.

1.2 If the length of the last m-subsequence is less than m,

pad blank characters to the m-subsequence.

Step 2. Construction of the back-end inverted index: for each m-subsequence obtained in Step 1

2.1 Suppose that an m-subsequence s occurs in a document d at offsets o0,o1,...,of ;

append a posting <d, [o0,o1,...,of]> to the posting list of s.

Step 3. Extraction of n-grams: for each m-subsequence obtained in Step 1

3.1 Suppose that an m-subsequence s is a sequence of characters c0,c1,...,ch-1 ;

extract n-grams cici+1...ci+n-1 (0 ≤ i < h-n+1) and

record the offsets of the n-grams within s.

Step 4. Construction of the front-end inverted index: for each n-gram obtained in Step 3

4.1 Suppose that an n-gram g occurs in an m-subsequence s at offsets o0,o1,...,of ;

append a posting <s, [o0,o1,...,of]> to the posting list of g.

Fig. 5 The basic algorithm of building the n-gram/2L index

4-subsequences are extracted such that they overlap by 1 (i.e.,
n − 1), those extracted from the document 0 are “ABCD”,
“DDAB”, and “BBCD”. Figure 6c shows the back-end index
built from these 4-subsequences. Since the 4-subsequence
“ABCD” occurs at the offsets 0, 3, and 6 in the documents
0, 3, and 4, respectively, the postings 〈0, [0]〉, 〈3, [3]〉, and
〈4, [6]〉 are appended to the posting list of the 4-subsequence
“ABCD”. Figure 6d shows the set of the 4-subsequences
and their identifiers. Figure 6e shows the set of the 2-grams
extracted from the 4-subsequences in Fig. 6d. Since 2-grams
are extracted by the 1-sliding technique, those extracted from
the 4-subsequence 0 are “AB”, “BC”, and “CD”. Figure 6f
shows the front-end index built from these 2-grams. Since
the 2-gram “AB” occurs at the offsets 0, 2, 1, and 2 in the
4-subsequences 0, 3, 4, and 5, respectively, the postings
〈0, [0]〉, 〈3, [2]〉, 〈4, [1]〉, and 〈5, [2]〉 are appended to the
posting list of the 2-gram “AB”.

3.2.2 Enhanced index building algorithm

Overview

The method of extracting subsequences affects the size
and query performance of the n-gram/2L index. It is

preferable to extract subsequences that are occurring
repeatedly in the document collection. The more frequently
the subsequences occur, the smaller the size of the n-gram/2L
index becomes because more repetition of the position
information can be eliminated. Furthermore, as subsequences
occur more frequently, we tend to have a smaller number of
unique subsequences because the number of subsequences
extracted from a document collection is inherently limited.
A smaller number of unique subsequences helps improve
the query performance of the n-gram/2L index. We ana-
lyze the index size and query performance in more detail in
Sects. 4.2 and 4.3.

Our key observation is that separation by words in the nat-
ural language is very useful in extracting subsequences. Since
a natural language document consists of words, a word is
likely to occur repeatedly in a document collection. Accord-
ingly, a subsequence composed of a word or a sequence of
words is likely to occur more repeatedly than an
m-subsequence is. Since words have variable lengths, we
need to support variable-length subsequences rather than
fixed-length ones (i.e., m-subsequences). In this section, we
present an enhanced index building algorithm using variable-
length subsequences for natural language documents.

123

1490 M.-S. Kim et al.

Fig. 6 An example of building
the n-gram/2L index

(c) The back-end index.

4-subsequence window

A B C D D A B B C D

D A B C D A B C D A

C D A B B C D D A B

B C D A B C D A B C

D D A B C D A B C D

B B C D A B C D A B

(a) The document collection.

4-subsequences
posting lists of

4-subsequences

ABCD
BBCD
BCDA
CDAB
DABC
DDAB

0, [0]

1, [6]
1, [3]
1, [0]
0, [3]

0, [6]
3, [3] 4, [6]
2, [3] 5, [0]
3, [0] 4, [3]
2, [0] 5, [6]
3, [6] 5, [3]
2, [6] 4, [0]

A B C D

B B C D

B C D A

C D A B

D A B C

D D A B

(b) The set of
4-subsequences.

document 0

document 1

document 2

document 3

document 4

document 5

(f) The front-end index.

2-grams posting lists of 2-grams

0, [0] 3, [2] 4, [1] 5, [2]

0, [1] 1, [1] 2, [0] 4, [2]
0, [2] 1, [2] 2, [1] 3, [0]
2, [2] 3, [1] 4, [0] 5, [1]
5, [0]

1, [0]
AB
BB
BC
CD
DA
DD

A B C Dsubsequence 0

subsequence 1

subsequence 2

subsequence 3

subsequence 4

subsequence 5

B B C D

B C D A

C D A B

D A B C

D D A B

(d) The set of 4-subsequences.

A B

B B

B C

C D

D A

D D

(e) The set of 2-grams.

Definition of v-subsequence

The enhanced index building algorithm is identical to the
basic index building algorithm except for the method of
extracting subsequences. When extracting variable-length
subsequences, it is preferable to confine the length of the sub-
sequences within a specified range around the base length.
To achieve this, we concatenate a short word to consecutive
words and split a long word into shorter subsequences. We
first denote the base length as v. We present a method of
determining the optimal v in Sect. 4.2.2. We then define a
short word as the one whose length is less than v; a long
word as the one whose length is greater than or equal to 2v.
A short word is concatenated to consecutive words so as to
form a subsequence whose length is greater than or equal
to v. A long word is split into subsequences whose length
is greater than or equal to v. We call these subsequences as
disjoint v-subsequences.

In addition to disjoint v-subsequences, we extract a sub-
sequence that overlaps with each of two consecutive disjoint
v-subsequences by n − 1. We call these subsequences as
joining v-subsequences. Since it overlaps with two disjoint v-
subsequences by n−1, its length is 2(n−1). The purpose for
extracting joining v-subsequences is to prevent the n-grams
from being missed or duplicated as in Theorem 1. Hereafter,
we call both disjoint v-subsequences and joining v-subse-
quences as v-subsequences. We denote the n-gram/2L index
constructed with v-subsequences by the n-gram/2L-v index.

Extracting v-subsequences

Figure 7 shows the algorithm for extracting v-subsequences.
We call this algorithm v-subsequence Extraction. In Step 1,
we split each long word into multiple subsequences such
that the length of each subsequence is greater than or equal
to v. In Step 2, we extract v-subsequences. If the length of
a word is greater than or equal to v, we extract this word
as a v-subsequence. However, if the length of a word is less
than v, we concatenate this word with the following words
or subsequences to make a v-subsequence. We extract also a
joining v-subsequence whenever a distinct v-subsequence is
extracted. If the v-subsequence is the last one, and its length
is less than v, we concatenate it to the immediately preceding
v-subsequence.

Example 3 Figure 8 shows an example of extracting
v-subsequences from a document. Suppose that n = 3 and
v = 4. The string “sequence” is a long word because its
length (i.e., 8) is equal to 2v, and thus, is split into “sequ” and
“ence.” The first occurrence of “A” is a short word because
its length (i.e., 1) is less than v, and thus, is concatenated
with “text” so as to form “A text”. Likewise, we obtain
“has many,” “A word,” “is a sequ,” “ence,” and “of letters”
by concatenating short words. The joining v-subsequences
“xtha,” “nywo,” “dsaw,” “rdis,” “quen,” and “ceof” are also
extracted.

123

Structural optimization of a full-text n-gram index 1491

Algorithm v-subsequence Extraction:

Input: (1) The document collection D

(2) The base length v of v-subsequences

(3) The length n of n-grams

Output: a set of v-subsequences

Algorithm: Execute Steps 1 and 2 for each document in D

Step 1. Splitting long words:

Denote a word w as a sequence of characters c0,c1,...,cLen(w)-1.

Perform the following step for each word in a document d

1.1 If Len(w) ≥ 2v, split w into subsequences starting from the character ci (0 ≤ i ≤ Len(w) / v - 1).

Here, the length of subsequences is v if 0 ≤ i < Len(w) / v - 1 or (Len(w) – v*i) otherwise.

Step 2. Extracting v-subsequences:

Denote a document d as a sequence of words or (words split in Step 1.1) w0,w1,...,wN-1.

Perform the following steps while scanning a document d

2.1 If Len(wi) ≥ v, extract wi as a disjoint v-subsequence and record the offset of wi within d.

2.2 If Len(wi) < v,

2.2.1 Let s = wi and perform Step 2.2.1.1 while Len(s) < v.

2.2.1.1 Concatenate wi+1 to s and increase i by 1.

2.2.2 Extract s as a disjoint v-subsequence and record the offset of s within d.

2.3 Extract a joining v-subsequence s between two consecutive disjoint v-subsequences and

record the offset of s within d.

2.4 If the v-subsequence is the last one, and its length is less than v,

concatenate it to the immediately preceding v-subsequence.

Fig. 7 The algorithm for extracting v-subsequences

Fig. 8 An example of extracting v-subsequences from a document

3.3 Query processing algorithm

In this section, we present the algorithm for processing
queries using the n-gram/2L index. Since the query process-
ing algorithm is identical for both m-subsequences
and v-subsequences, we present the algorithm only for
m-subsequences.

The query processing algorithm consists of the follow-
ing two steps: (1) searching the front-end index in order to
retrieve candidate results, (2) searching the back-end index in
order to refine candidate results. In the first step, we select the
m-subsequences that cover a query string by searching the
front-end index with the n-grams extracted from the query
string. The m-subsequences that do not cover the query string

are filtered out in this step. In the second step, we select the
documents that have a set of m-subsequences {Si } contain-
ing the query string by searching the back-end index with the
m-subsequences retrieved in the first step. The documents
including one or more m-subsequences retrieved in the first
step represent a set of candidate results satisfying the neces-
sary condition of (i.e., covering) the query. The final results
can be obtained in the second step by doing refinement that
removes the false positives.

Now, we formally define cover in Definition 1 and contain
in Definition 3.

Definition 1 S covers Q if an m-subsequence S and a query
string Q satisfy one of the following four conditions: (1) a
suffix of S matches a prefix of Q; (2) the whole string of S
matches a substring of Q; (3) a prefix of S matches a suffix
of Q; (4) a substring of S matches the whole string of Q.

Definition 2 The expand function expands a sequence of
overlapping character sequences into one character sequence.
(1) For a sequence consisting of two character sequences:

123

1492 M.-S. Kim et al.

(a) S covers Q.

Q B B

B B B

A

A C

C

C

C

S

(b) S does not cover Q.

Q B B A

A D

DD

S

Fig. 9 Examples of an m-subsequence S covering the query Q

Let Si = ci · · · c j and Sp = cp · · · cq . Suppose that a suffix
of Si and a prefix of Sp overlap by k (i.e., c j−k+1 · · · c j =
cp · · · cp+k−1, where k ≥ 0.) Then, expand(Si Sp) = ci · · ·
c j cp+k · · · cq . (2) For a sequence consisting of more than
two character sequences: expand(Sl Sl+1 · · · Sm) = expand
(expand(Sl Sl+1), Sl+2 · · · Sm).

Definition 3 {Si } contains Q if a set of m-subsequences {Si }
and a query string Q satisfy the following condition: Let
Sl Sl+1 · · · Sm be a sequence of m-subsequences overlapping
with each other in {Si }. A substring of expand(Sl Sl+1 · · · Sm)

matches the whole string of Q.

Example 4 Figure 9 shows examples of covering. Here, Q
is the query and S is an m-subsequence. In Fig. 9a, S covers
Q since a suffix of S matches a prefix of Q. In Fig. 9b, S
does not cover Q since “BCD” does not satisfy any of the
four conditions in Definition 1.

Lemma 1 A document that has a set of m-subsequences
{Si } containing the query string Q includes at least one
m-subsequence covering Q.

Proof We first show the cases that a set of m-subsequences
{Si } contains Q in Fig. 10. Let Len(Q) be the length of Q.
We classify the cases depending on whether Len(Q) ≥ m
(Fig. 10a) or Len(Q) < m (Fig. 10b and c). In Fig. 10a,
the set {Si , . . . , S j } contains Q. In Fig. 10b, the set {Sk}
contains Q. In Fig. 10c, the set {Sp, Sq} contains Q. From
Fig. 10 we see that, if the set {Si } contains Q, at least one
m-subsequence in {Si } satisfies a condition in Definition 1,
covering Q. ��

Figure 11 shows the algorithm of processing queries using
the n-gram/2L index. We call this algorithm n-Gram/2L Index
Searching. In Step 1, the algorithm splits the query string Q
into multiple n-grams and searches the posting lists of those
n-grams in the front-end index. Then, performing merge
outer join among those posting lists using the m-subsequence
identifier as the join attribute, the algorithm adds the
m-subsequences that cover Q by Definition 1 (i.e.,
m-subsequences satisfying a necessary condition in

Lemma 1) into the set Scover. Since an m-subsequence cover-
ing Q typically does not have all the n-grams extracted from
Q, the algorithm performs merge outer join in Step 1.2. Here,
the algorithm uses the offset information in the postings to
be merge outer joined in order to check whether the m-sub-
sequence covers Q. In Step 2, the algorithm performs merge
outer join among the posting lists of the m-subsequences in
Scover using the document identifier as the join attribute. It
identifies the set {Si } of the m-subsequences having the same
document identifier di and performs refinement by checking
whether {Si } indeed contains Q according to Definition 3.
Since the set {Si } may be a subset of Scover, the algorithm
performs merge outer join in Step 2.1. Here, the algorithm
uses the offset information in the postings to be merge outer
joined in order to check whether {Si } contains Q. If {Si }
contains Q, di is returned as a query result.

4 Formal analysis of the n-gram/2L index

In this section, we present a formal analysis of the n-gram/2L
index. In Sect. 4.1, we formally prove that the n-gram/2L
index is derived by eliminating the redundancy in the position
information that exists in the n-gram index. In Sect. 4.2, we
present the space complexities of these indexes. In Sect. 4.3,
we present their time complexities of searching.

4.1 Formalization

In this section, we observe that the redundancy of the position
information existing in the n-gram index is caused by a non-
trivial multivalued dependency (MVD) [6] and show that the
n-gram/2L index can be derived by eliminating that redun-
dancy through relational decomposition to the fourth nor-
mal form (4NF). Since this observation is identical for both
m-subsequences and v-subsequences, we present the formal-
ization only for m-subsequences.

For the sake of theoretical development, we first consider
the relation that is converted from the n-gram index so as to
obey the first normal form (1NF). We call this relation the
NDO relation. This relation has three attributes N , D, and O .
Here, N indicates n-grams, D document identifiers, and O
offsets. Further, we consider the relation obtained by add-
ing the attribute S and by splitting the attribute O into two
attributes O1 and O2. We call this relation the SN DO1 O2

relation. This relation has five attributes S, N , D, O1, and
O2. Here, S indicates m-subsequences, O1 the offsets of
n-grams within m-subsequences, and O2 the offsets of
m-subsequences within documents.

The values of the attributes S, O1, and O2 appended to the
relation SN DO1 O2 are automatically determined by those
of the attributes N , D, and O in the relation N DO . The
reason is that an n-gram appearing at a specific offset o in

123

Structural optimization of a full-text n-gram index 1493

Fig. 10 The cases that a set of
m-subsequences contains Q

Q

...

...

...

...

...

(a) {Si, Si+1, ... Sj} contains Q.

...

... Si
Si+1

Sj

Sk
Sp

Sq

for Len(Q) ≥ m

for Len(Q) < m Q Q

(b) {Sk} contains Q. (c) Sp, Sq} contains Q.

Algorithm n-Gram/2L Index Searching:

Input: (1) The two-level n-gram inverted index

(2) A query string Q

Output: Identifiers of the documents containing Q

Algorithm:

Step 1. Searching the front-end inverted index:

1.1 Split Q into multiple n-grams and search the posting lists of those n-grams.

1.2 Perform merge outer join among those posting lists using the m-subsequence identifier as the join attribute;

add the m-subsequences that cover Q by Definition 1 into the set Scover.

Step 2. Searching the back-end inverted index:

2.1 Perform merge outer join among the posting lists of m-subsequences in Scover

using the document identifier as the join attribute.

2.1.1 Identify the set {Si} of m-subsequences having the same document identifier di and

perform refinement by checking whether {Si} contains Q or not according to Definition 3.

2.1.2 If {Si} contains Q, di is returned as the query result.

Fig. 11 The algorithm of processing queries using the n-gram/2L index

the document belongs to only one m-subsequence as shown
in Theorem 1. In the tuple (s, n, d, o1, o2) determined
by a tuple (n, d, o) of the relation N DO , s represents the
m-subsequence that the n-gram n occurring at the offset o in
the document d belongs to. o1 is the offset where the n-gram
n occurs in the m-subsequence s, and o2 the offset where the
m-subsequence s occurs in the document d.

Example 5 Figure 12a shows the relation N DO converted
from the n-gram index in Fig. 2b. Figure 12b shows the rela-
tion SN DO1 O2(m = 4) derived from the relation N DO
in Fig. 12a. Here, the tuples of the relation SN DO1 O2 are
sorted by the values of attribute S. In Fig. 12, the marked tuple
of the relation SN DO1 O2 is determined by the marked tuple
of the relation N DO . Since the 2-gram “BC” at the offset
1 in the document 0 belongs to the 4-subsequence “ABCD”

in Fig. 6a, the value of the attribute S of the marked tuple
becomes “ABCD”. The value of the attribute O1 becomes
1 because the 2-gram “BC” occurs in the 4-subsequence
“ABCD” at the offset 1, and that of the attribute O2 becomes 0
because the 4-subsequence “ABCD” occurs in the document
0 at the offset 0.

We now prove that non-trivial MVDs hold in the relation
SN DO1 O2 (i.e., the n-gram index) in Lemma 2.

Lemma 2 The non-trivial MVDs S →→ N O1 and S →→
DO2 hold in the relation SN DO1 O2. Here, S is not a
superkey.

Proof By the definition of the MVD [6,28], X →→ Y holds
in R, where X and Y are subsets of R, if whenever r is a rela-
tion for R and µ and ν are two tuples in r , with µ, ν ∈

123

1494 M.-S. Kim et al.

(a) An example of the NDO relation.
(b) An example of the SNDO1O2 relation.

(sorted by attribute S)

Fig. 12 An example showing the existence of non-trivial MVDs in the relation SN DO1 O2

r, µ[X] = ν[X] (that is, µ and ν agree on the attributes of
X), then r also contains tuples φ and ψ , that satisfy three
conditions below.

1. φ[X] = ψ[X] = µ[X] = ν[X]
2. φ[Y] = µ[Y] and φ[R − X − Y] = ν[R − X − Y]
3. ψ[Y] = ν[Y] and ψ[R − X − Y] = µ[R − X − Y].

X →→ Y is non-trivial if Y � X and X ∪ Y = R
(i.e., R − X − Y = ∅) (meaning Y and R − X − Y are
non-empty sets of attributes) [6]. That is, a non-trivial MVD
holds if, for any value of the attribute X , the Y -values and
the (R − X − Y)-values form a Cartesian product [25].

Let {S1, . . . , Sr } be a set of m-subsequences extracted
from the document collection, {Ni1, . . . , Niq} a set of
n-grams extracted from an m-subsequence Si , and {Di1, . . . ,

Dip} a set of documents where Si occurs (1 ≤ i ≤ r). Then,
the set of n-grams {Ni1, . . . , Niq} is extracted from every
document in the set of documents {Di1, . . . , Dip} since Si is
in these documents. Hence, in the set of tuples whose S-value
is Si , the N O1-values representing the n-grams extracted
from Si and the DO2-values representing the documents
containing Si always form a Cartesian product. Suppose that
R = SN DO1 O2, X = S, Y = N O1, and R−X−Y = DO2.
Then, the three conditions above are satisfied because the

Y-values and the (R − X − Y)-values form a Cartesian
product in the set of tuples having the same X -values. These
conditions above are satisfied also when Y = DO2. We also
note that N O1 � S, DO2 � S, N O1∪S = SN DO1 O2, and
DO2∪S = SN DO1 O2. Thus, the non-trivial MVDs S →→
N O1 and S →→ DO2 hold in the relation SN DO1 O2. S
is obviously not a superkey as shown in the counter example
of Fig 12b. ��

Intuitively, non-trivial MVDs hold in the relation
SN DO1 O2 because the set of documents, where an
m-subsequence occurs, and the set of n-grams, which are
extracted from that m-subsequence, are independent of each
other. If attributes in a relation are independent of each other,
non-trivial MVDs hold in that relation [6,25,28]. In the rela-
tion SN DO1 O2, due to the independence between the set of
documents and the set of n-grams, there exist the tuples cor-
responding to all possible combinations of documents and
n-grams for a given m-subsequence.

Example 6 Figure 12b shows an example showing the exis-
tence of the non-trivial MVDs S →→ N O1 and S →→
DO2 in the relation SN DO1 O2. In the shaded tuples of
the relation SN DO1 O2 shown in Fig. 12b, there exists the
redundancy that the DO2-values (0, 0), (3, 3), and (4, 6)

123

Structural optimization of a full-text n-gram index 1495

repeatedly appear for the N O1-values (“AB”, 0), (“BC”, 1),
and (“CD”, 2). That is, the N O1-values and the DO2-
values form a Cartesian product in the tuples whose S-value
is “ABCD”. We note that there such repetitions also occur in
the other S-values.

Corollary 1 The relation SN DO1 O2 is not in the 4NF.

Proof A non-trivial MVD S →→ N O1 exists, where S is
not a superkey. ��

The front-end and back-end indexes of the n-gram/2L
index are identical to two relations obtained by decompos-
ing the relation SN DO1 O2 so as to obey 4NF. We prove this
proposition in Theorem 2. Thus, it can be proved that the
redundancy caused by a non-trivial MVD does not exist in
the n-gram/2L index [28].

Lemma 3 The decomposition (SN O1, SDO2) is in 4NF.

Proof MVD’s in SN O1 are SO1 →→ N , SN O1 →→ S
|N |O1. Those in SDO2 are DO2 →→ S, SDO2 →→
S|D|O2. All of these MVD’s are trivial ones and do not vio-
late 4NF. ��
Theorem 2 The 4NF decomposition (SN O1, SDO2) of the
relation SN DO1 O2 is identical to the front-end and back-
end indexes of the n-gram / 2L index.

Proof The relation SN O1 is represented as the front-end
index by regarding N , S, and O1 as a term, an m-subsequence
identifier, and an offset, respectively. Similarly, the relation
SDO2 is represented as the back-end index by regarding
S, D, and O2 as a term, a document identifier, and an off-
set, respectively. Therefore, the 4NF decomposition (SN O1,
SDO2) of the relation SN DO1 O2 is identical to the front-
end and back-end indexes of the n-gram/2L index. ��
Example 7 Figure 13 shows that the relation SN DO1 O2 in
Fig. 12 is decomposed into the two relations SN O1 and
SDO2. In the attribute S of the relation SDO2, the val-
ues in parentheses indicate m-subsequence identifiers. The
tuples of the relation SDO2 are sorted by the m-subsequence
identifier. The shaded tuples of the relation SN DO1 O2 in
Fig. 12 are decomposed into the shaded ones of the relations
SN O1 and SDO2 in Fig. 13. We note that the redundancy,
i.e., the Cartesian product between N O1 and DO2 in Fig. 12
has been eliminated in Fig. 13. We also note that the rela-
tions SN O1 and SDO2, when represented in the form of the
inverted index, become identical to the front-end and back-
end indexes in Fig. 6, respectively.

4.2 Analysis of the index size

The parameters affecting the size of the n-gram/2L index
are the length n of n-grams and length m of m-subsequences

(or the base length v of v-subsequences). In general, n is
the value determined by applications. On the other hand, m
(or v) is the value that can be freely tuned when creating
the n-gram/2L index. In this section, we analyze the size of
the n-gram/2L index and present the model for determin-
ing the optimal length of m (or v) that minimizes the index
size. We denote the optimal length of m by mo and the opti-
mal base length of v by vo. We present the analyses for the
n-gram/2L-m index in Sect. 4.2.1 and for the n-gram/2L-v
index in Sect. 4.2.2.

4.2.1 n-gram/2L-m index

In Table 1, we summarize some basic notations to be used
for analyzing the size of the n-gram/2L index. Here, we sim-
ply regard the index size as the number of the offsets stored
because the former is approximately proportional to the latter,
the latter representing the occurrences of terms in documents
[32].

Now, in order to determine the value of mo, we define the
decomposition efficiency in Definition 4.

Definition 4 The decomposition efficiency is the ratio of the
size of the n-gram index to that of the n-gram/2L index. Thus,

decomposition efficiency = sizengram

sizefront + sizeback
. (1)

The decomposition efficiency in Definition 4 is computed
through Eqs. (1)–(5). We count the number of offsets in the
index using the number of tuples in the relation SN DO1 O2.
The number of tuples in the relation SN DO1 O2 is equal to
that of offsets of the n-gram index since the relation SN D
O1 O2 is created by normalizing the n-gram index into 1NF.
As mentioned in Lemma 2, for any value of the attribute S
in the relation SN DO1 O2, the values of attributes N O1 and
those of attributes DO2 form a Cartesian product. Thus, in
the relation SN DO1 O2, the number of tuples having s as
the value of S becomes kngram(s)×kdoc(s). Accordingly, the
size of the n-gram index can be calculated as in Eq. (2),
i.e., the summation of kngram(s) × kdoc(s) for all unique
m-subsequences. We obtain the sizes of the front-end index
and the back-end index similary. In the relation SN O1 cor-
responding to the front-end index, the number of tuples hav-
ing s as the value of S becomes kngram(s). Hence, the size
of the front-end index is as in Eq. (3), i.e., the summation
of kngram(s) for all unique m-subsequences. In the relation
SDO2 corresponding to the back-end index, the number of
tuples having s as the value of S becomes kdoc(s). Hence, the
size of the back-end index is as in Eq. (4), i.e., the summa-
tion of kdoc(s) for all unique m-subsequences. Consequently,

123

1496 M.-S. Kim et al.

4-subsequences posting lists

ABCD
BBCD
BCDA
CDAB
DABC
DDAB

0, [0]

1, [6]
1, [3]
1, [0]
0, [3]

0, [6]
3, [3] 4, [6]
2, [3] 5, [0]
3, [0] 4, [3]
2, [0] 5, [6]
3, [6] 5, [3]
2, [6] 4, [0]

2-grams posting lists

0, [0] 3, [2] 4, [1] 5, [2]

0, [1] 1, [1] 2, [0] 4, [2]
0, [2] 1, [2] 2, [1] 3, [0]
2, [2] 3, [1] 4, [0] 5, [1]
5, [0]

1, [0]
AB
BB
BC
CD
DA
DD

Fig. 13 The result of decomposing the relation SN DO1 O2 in Fig. 12 into two relations

Table 1 The notations to be
used for analyzing the size of
the n-gram/2L index

Symbols Definitions

sizengram The size of the n-gram index

sizefront The size of the front-end index

sizeback The size of the back-end index

S The set of unique m-subsequences extracted from the document collection

kngram(s) The number of the n-grams extracted from an m-subsequence s

kdoc(s) The frequency of an m-subsequence s appearing in the document collection

avgngram(S) The average value of kngram(s) where s ∈ S (= (
∑

s ∈ S
kngram(s)) / |S|)

avgdoc(S) The average value of kdoc(s) where s ∈ S (= (
∑

s ∈ S
kdoc(s)) / |S|)

we obtain Eq. (5) for the decomposition efficiency from
Eqs. (1)–(4).

sizengram =
∑

s ∈ S

(
kngram(s)× kdoc(s)

)

≈ |S|
(

avgngram(S)× avgdoc(S)
)

(2)

sizefront =
∑

s∈S

kngram(s) ≈ |S|avgngram(S) (3)

sizeback =
∑

s ∈ S

kdoc(s) ≈ |S|avgdoc(S) (4)

decomposition efficiency ≈ avgngram(S)× avgdoc(S)

avgngram(S)+ avgdoc(S)
. (5)

The decomposition efficiency is computed by using S,
kngram(s), and kdoc(s), which can be obtained by preprocess-
ing the document collection. This can be done by sequentially
scanning the document collection only once (i.e., O(data

123

Structural optimization of a full-text n-gram index 1497

size)). To determine mo, we first compute decomposition
efficiencies for several candidate values of m, and then, select
the one that provides the maximum decomposition efficiency.
Experimental results show that mo is determined approxi-
mately in the range (n + 1) ∼ (n + 3), i.e., longer than n by
1–3, in the document collection of 10 MB–1 GB.

Equations (2)–(4) shows that the space complexity of
the n-gram index is O(|S|(avgngram × avgdoc)), while that of
the n-gram/2L index is O(|S|(avgngram + avgdoc)). As indi-
cated by Eq. (5), the decomposition efficiency is maximized
when avgngram is equal to avgdoc. Here, avgdoc increases
as the database size gets larger, and avgngram does as m
gets longer. avgngram also becomes larger in a larger data-
base since we choose a longer mo to obtain the maximum
decomposition efficiency. That is, both avgngram and
avgdoc become larger as the database size increases. Since
(avgngram × avgdoc) increases more rapidly than (avgngram +
avgdoc) does, the decomposition efficiency increases as the
database size does. Therefore, the n-gram/2L index has the
characteristic of reducing the index size more for a larger
database.

4.2.2 n-gram / 2L-v index

The space complexity of the n-gram/2L-v index is identical
to that of n-gram/2L-m index since the n-gram/2L-v index
is obtained just in the same way as the n-gram/2L-m index
is—by decomposing the relation SN DO1 O2 into the relation
SN O1 and SDO2.

Nevertheless, the size of the n-gram/2L-v index is
smaller than that of the n-gram/2L-m index. We explain this
advantage using Eqs. (2)–(5). |S| is decreased because
v-subsequences are extracted based on words, which
occur more repeatedly in the document collection than
m-subsequences do (for example, when the size of the
document collection is 1 GB, |S| = 1, 662, 900 for
m-subsequences (m = mo = 5) and |S| = 1, 015, 699
for v-subsequences (v = vo = 4).) On the other hand,
|S|(avgngram × avgdoc) in Eq. (2) remains to be the same
regardless of the kinds of subsequences because it means
the total number of n-grams extracted from the document
collection. Thus, a decrease of |S| means that avgngram
and avgdoc increase. That is, avgngram and avgdoc in the
n-gram/2L-v index get larger than those in the n-gram/
2L-m index. We note that Eq. (5) increases as both avgngram
and avgdoc increase since (avgngram × avgdoc) increases
more rapidly than (avgngram + avgdoc) does. Thus, the
decomposition efficiency is enhanced if we use
v-subsequences.
vo is determined in the same way as mo is. Experimental

results show that vo typically is within the range n−(n + 1),
i.e., longer than n by 0−1, for document collections of
10 MB–1 GB.

4.3 Analysis of the query performance

The parameters affecting the query performance of the
n-gram/2L index are m (or v), n, and the length Len(Q)
of the query string Q. In this section, we conduct a ball-
park analysis of the query performance to investigate the
trend depending on these parameters. We present the anal-
yses for the n-gram/2L-m index in Sect. 4.3.1 and for the
n-gram/2L-v index in Sect. 4.3.2.

4.3.1 n-gram/2L-m index

For simplicity of our analysis, we first make the following
two assumptions: (1) the query processing time is propor-
tional to the number of offsets accessed and the number of
posting lists accessed. The latter has a nontrivial effect on per-
formance since accessing a posting list incurs seek time for
moving the disk head to locate the posting list; (2) the size of
the document collection is so large that all possible combina-
tions of n-grams(=|�|n) or m-subsequences(=|�|m), where
� denotes the alphabet, are indexed in the inverted index (for
example, when |�| = 26 and m = 5, |�|m = 11, 881, 376).
Since the performance of query processing is important espe-
cially in a large database, the second assumption is indeed
reasonable.

The ratio of the query performance of the n-gram index to
that of the n-gram/2L index is computed by using Eqs. (6)–
(9). Let koffset be the average number of offsets in a posting
list, and kplist be the number of posting lists accessed dur-
ing query processing. Then, the number of offsets accessed
during query processing is koffset × kplist. In the n-gram

index, since koffset is
sizengram

|�|n and kplist is Len(Q)
n , the query

processing time is as in Eq. (6). In the front-end index of

the n-gram/2L index, since koffset is sizefront|�|n and kplist is
(Len(Q)−n +1), the query processing time is as in Eq. (7).
In the back-end index of the n-gram/2L index,

koffset is sizeback|�|m . Here, kplist is the number of m-subsequences
covering Q and is calculated differently depending on whe-
ther Len(Q) < m or Len(Q) ≥ m. If Len(Q) ≥ m, the
number of m-subsequences Si+1, . . . , S j−1 in Fig. 10a is
(Len(Q) − m + 1), and that of m-subsequences Si or S j

is
∑m−n−1

i=0 |�|m−n−i . If Len(Q) < m, the number of an
m-subsequence Sk in Fig. 10b is

(
(m − Len(Q) + 1) ×

|�|m−Len(Q)
)
, and that of m-subsequences Sp or Sq is

∑Len(Q)−n−1
i=0 |�|m−n−i . Hence, the query processing time

in the back-end index is as in Eq. (8). Finally, Eq. (9) shows
the ratio of the query processing times.

timengram = sizengram

|�|n × Len(Q)

n
(6)

timefront = sizefront

|�|n × (Len(Q)− n + 1) (7)

123

1498 M.-S. Kim et al.

timeback =

⎧
⎪⎪⎨

⎪⎪⎩

sizeback|�|m ×
(

Len(Q)− m + 1 + 2
∑m−n−1

i=0 |�|m−n−i
)
, if Len(Q) ≥ m

sizeback|�|m ×
(
(m − Len(Q)+ 1)× |�|m−Len(Q) + 2

∑Len(Q)−n−1
i=0 |�|m−n−i

)
, if Len(Q) < m

(8)

timengram

timefront + timeback
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sizengram× Len(Q)
n

(sizefront×(Len(Q)−n+1))+
(
sizeback×(Len(Q)−m+1

|�|m−n +c)
) , if Len(Q) ≥ m

sizengram× Len(Q)
n

(sizefront×(Len(Q)−n+1))+
(
sizeback×(m−Len(Q)+1

|�|Len(Q)−n +d)
) , if Len(Q) < m

(9)

where c = 2
∑m−n−1

i=0 (1
|�|)

i , d = 2
∑Len(Q)−n−1

i=0 (1
|�|)

i

From Eq. (9), we know that the time complexities of those
indexes are identical to their space complexities. By substitut-
ing sizengram with |S|(avgngram × avgdoc), Eq. (9) shows that
the time complexity of the n-gram index is O(|S|(avgngram ×
avgdoc))while that of the n-gram/2L index is O(|S|(avgngram
+avgdoc)). The time complexity indicates that the n-gram/2L
index has a good characteristic that the query performance
improves compared with the n-gram index, and further, the
improvement gets larger as the database size gets larger.

From Eqs. (6)–(9), we note that the query processing time
increases at a lower rate in the n-gram/2L index than in the n-
gram index as Len(Q) gets longer. In the front-end index, the
query processing time increases proportionally to Len(Q),
but it contributes a very small proportion of the total query
processing time because the index size is very small. The
size of the front-end index is much smaller than that of the
n-gram index because the total size of m-subsequences is
much smaller than the total size of documents (for exam-
ple, when the size of the document collection is 1 GB and
m = 5, the size of the set of m-subsequences is 13–27 MB).
Furthermore, in the back-end index, Len(Q) little affects the
query processing time since |�|m−n is dominant (for exam-
ple, when |�| = 26,m = 6, and n = 3, |�|m−n = 17, 576).
This is also an excellent property since it has been pointed
out that the query performance of the n-gram index for long
queries tends to be bad [30].

To analyze the query processing time more precisely, we
should take the time to locate posting lists into account. Sup-
pose that α is the seek time required for locating a posting

list. Then, the total time for locating posting lists is kplist ×α.
Hence, by using kplist computed in Eqs. (6)–(8), we derive
the time for locating posting lists as shown in Eqs. (10)–(12).

plist_timengram = α × Len(Q)

n
(10)

plist_timefront = α × (Len(Q)− n + 1) (11)

plist_timeback =

⎧
⎪⎪⎨

⎪⎪⎩

α ×
(

Len(Q)− m + 1 + 2
∑m−n−1

i=0 |�|m−n−i
)
, if Len(Q) ≥ m

α ×
(
(m − Len(Q)+ 1)× |�|m−Len(Q) + 2

∑Len(Q)−n−1
i=0 |�|m−n−i

)
, if Len(Q) < m

(12)

From Eqs. (10)–(12), the time for locating posting lists
of the n-gram/2L index is larger than that of the n-gram
index by plist_timeback at least. In Eq. (12), the dominant

factor of kplist is
(

2
∑m−n−1

i=0 |�|m−n−i
)

if Len(Q) ≥ m

and
(

2
∑Len(Q)−n−1

i=0 |�|m−n−i
)

if Len(Q) < m, where

these values increase exponentially as m gets larger. Hence,
if we select (mo − 1) instead of mo for the length of
m-subsequences, we can significantly improve the query
performance while sacrificing a small increment of the
index size. Consequently, we use (mo − 1) for performance
evaluation in Sect. 6.2.

4.3.2 n-gram/ 2L-v index

The time complexity of the n-gram/2L index for
v-subsequences is identical to that for m-subsequences just
like the space complexity. Yet, the query performance of the
n-gram / 2L-v index is improved due to its smaller size com-
pared with the n-gram/2L-m index.

123

Structural optimization of a full-text n-gram index 1499

Another advantage of the n-gram/2L-v index is that the
time for locating posting lists decreases compared with the
n-gram/2L-m index. It is because the number of posting lists
in the n-gram/2L-v index decreases since we have fewer
unique v-subsequences than unique m-subsequences as men-
tioned in Sect. 4.2.2. Thus, we use vo as the base length of
v-subsequences for performance evaluation in Sect. 6.2.

5 Implementation issues

In this section, we discuss implementation of the n-gram/2L
index to improve the efficiency of the index structure. As
explained in the query processing algorithm in Fig. 11, we
obtain a set of m-subsequence identifiers (of integer type) by
searching the front-end index in Step 1. To proceed into Step
2, we need to do the following: (1) to find m-subsequences
using the m-subsequence identifiers obtained in Step 1; (2) to
locate the posting list in the back-end index for each m-sub-
sequence through the B+-tree index. These two operations
may impose significant overhead to query processing per-
formance.

To solve these problems, we store a physical identifier
rather than an m-subsequence identifier into the posting of
the front-end index. Here, the physical identifier directly
points to the posting list in the back-end index. In general,
a physical identifier consumes more storage space than an
m-subsequence identifer does. However, it does not pose a
significant overhead since the size of the front-end index
itself is very small as mentioned in Sect. 4.3.1. We adopt this
enhanced implementation in this paper.

6 Performance evaluation

6.1 Experimental data and environment

The purpose of our experiments is to compare the size and
query performance of the n-gram/2L index with those of the
n-gram index. We use the index size ratio defined in Eq. (13)
as the measure for the index size and the number of page
accesses and the wall clock time for the query performance.

index size ratio = the number of pages allocated for the n-gram index (#Pagesn−gram)

the number of pages allocated for the n-gram/2L index (# Pagesn−gram/2L)
(13)

We have performed experiments using two real data sets.
The first one is the set of English text databases—WSJ,
AP, and FR in the TREC databases1—used in information
retrieval. We use three data sets of 10 MB, 100 MB, and

1 http://trec.nist.gov.

1 GB. We call each data set TREC-10M, TREC-100M, and
TREC-1G, respectively. The second one is the set of protein
sequence databases—nr, env_nr, month.aa, and pataa in the
NCBI BLAST web site2—used in bioinformatics. We use
three data sets of 10 MB, 100 MB, and 1 GB. We call each
data set PROTEIN-10M, PROTEIN-100M, PROTEIN-1G,
respectively. We remove tags, spaces, special characters, and
numbers in the TREC databases making the formats of the
TREC data and the PROTEIN data similar in order to exclude
the influence of the format to the results of the experiments.

We conduct all the experiments on a Pentium 2.6 GHz
Linux PC with 1 GB of main memory and 400 GB Seagate
E-IDE disks. To avoid the buffering effect of the LINUX file
system and to guarantee actual disk I/O’s, we use raw disks
for storing data and indexes. We use the inverted index imple-
mented in the Odysseus ORDBMS [29] for all the experi-
ments. The page size for data and indexes is set to be 4,096
bytes.

Experiments for data size

To compare the index size, we measure the estimated and
real index size ratios in the PROTEIN and TREC databases
while varying m. We use the decomposition efficiency (Eq. 5)
presented in Sect. 4.2 to estimate the index size ratio. Then,
we show that the estimation of mo is correct. When creating
the n-gram index and the front-end index, we set n to be 3,
which is the most practically used one in n-gram applications
[14,31]. Besides, when creating the back-end index, we vary
m from 4, the minimum of m (i.e., n + 1), to (mo + 1). Here,
if m = n, the back-end index is identical to the n-gram index.
Thus, m must be longer than n, that is, m > n.

To demonstrate the effectiveness of v-subsequences,
we compare the size the n-gram/2L-v index with that of the
n-gram/2L-m index. We measure the estimated and real index
size ratios in the TREC databases while varying v. We show
that the estimated vo is identical to the real vo. When creating
the front-end index, we set n to be 3 as before. Besides, when
creating the back-end index, we vary v from 3, the minimum
of v (i.e., n), to (vo + 1). We note that the minimum of v is
n rather than n + 1. The reason is that, even if v = n, the

back-end index is not identical to the n-gram index since the
length of v-subsequences can be longer than v. If v < n,
n-grams can not be extracted from v-subsequences since the
length of v-subsequences can be shorter than n.

2 http://www.ncbi.nlm.nih.gov/BLAST.

123

http://trec.nist.gov
http://www.ncbi.nlm.nih.gov/BLAST

1500 M.-S. Kim et al.

Experiments for query performance

To compare the query performance, we measure the number
of page accesses and the wall clock time while varying the
database size and the query length. To test the effect of the
database size, we build three databases of 10 MB, 100 MB,
and 1 GB using the PROTEIN data and TREC data, respec-
tively. Here, we repeat the test 100 times with randomly
selected queries whose length is 3–18 and present the aver-
age result. To test the effect of the query length, we vary
the query length as follows: 3, 6, 9, 12, 15, and 18. We note
that the minimum query length is 3, which is the same as
n = 3. Using PROTEIN-1G and TREC-1G, we repeat the
test 50 times with randomly selected queries and present the
average result.

We compare the query performance of four indexes. The
first one is the n-gram index where a query string is split
into overlapping n-grams (by the 1-sliding technique). The
second one is the n-gram index where a query string is split
into disjoint n-grams. In this way, we are able to improve
the query performance of the n-gram index for exact-match
queries as explained in Sect. 2.1. Hereafter, we call this
n-gram index as the n-gram-disjoint index. The third one is
the n-gram/2L-m index. The fourth one is the n-gram/2L-v
index (only for the TREC databases).

Experiments for comparing with the compact suffix array

We compare the query performance of the n-gram/2L index
with that of Makinen’s compact suffix array [17] stored in
disk. The suffix array is also widely used for text search. Nev-
ertheless, it has been pointed out as a problem that the size of
the suffix array tends to be large. In recent years, a number
of approaches that reduce its size by compression have been
published, and Makinen’s compact suffix array (simply, the
CSA) is one whose size is similar to that of the n-gram/2L
index.

For the experiments, we modify the CSA into a disk-based
index structure because the CSA is a memory-based one.
When building the index, the CSA requires a large amount
of memory (e.g., 10 GB of main-memory for 1 GB of text)
and a large number of random accesses on temporary arrays
in main memory, which would cause extreme overhead if it
were run in a disk environment. Hence, we modify the index
building algorithm so as to use relatively small memory (e.g.,
1 GB of main-memory for 1 GB of text) and access tempo-
rary arrays on disk as sequential as possible. After building
the index, we save the final arrays on disk. When process-
ing queries, we access those arrays as if they were in main
memory.

To compare the query performance, we measure the num-
ber of page accesses and the wall clock time while varying
the query length as follows: 3, 6, 9, 12, 15, 18, 21, 24, and

27. Using PROTEIN-1G and TREC-1G, we repeat the test 50
times with randomly selected queries and present the average
result.

6.2 Results of the experiments

6.2.1 Index size

Figure 14 shows the estimated and real index size ratios as the
database size and length of m-subsequences are varied in the
PROTEIN databases. These results indicate that the size of
the n-gram/2L index is significantly reduced compared with
that of the n-gram index. Figure 14b shows that the size of the
n-gram/2L index, when the length of m-subsequences is set
to be mo, is reduced by up to 1.7 times in PROTEIN-10M, by
up to 2.2 times in PROTEIN-100M, and by up to 2.7 times in
PROTEIN-1G compared with that of the n-gram index. Sim-
ilarly, the size of the n-gram/2L index, when m = (mo − 1),
is reduced by up to 1.85 times in PROTEIN-100M and by
up to 1.88 times in PROTEIN-1G compared with that of the
n-gram index. We use (mo − 1) as m to optimize the query
performance as mentioned in Sect. 4.3.1.

We note that the estimated mo in Fig. 14a is identical to the
real mo in Fig. 14b. For PROTEIN-10M, PROTEIN-100M,
and PROTEIN-1G, both estimated mo and real mo are 4,
5, and 5, respectively. Besides, the real index size ratio is
as close as 86–98% of the estimated one, showing a small
amount of errors (2–14%) in estimation. These results indi-
cate that the analysis in Sect. 4.2 is indeed correct.

Figures 15 and 16 show the estimated and real index size
ratios as the database size and length of m-subsequences (or
v-subsequences) are varied in the TREC databases. As men-
tioned in Sect. 4.2.2, the index size ratio of the n-gram/2L-v
index in Fig. 16b improves over that of the n-gram/2L-m
index in Fig. 15b. Figure 15b shows that the size of the
n-gram/2L-m index, when the length of m-subsequences is
set to be (mo − 1), is reduced by up to 1.28 times in TREC-
10M, by up to 1.68 times in TREC-100M, and by up to
1.88 times in TREC-1G compared with that of the n-gram
index. On the other hand, Fig. 16b shows that the size of the
n-gram/2L-v index, when the length of v-subsequences is
set to be vo, is reduced by up to 1.44 times in TREC-10M,
by up to 1.84 times in TREC-100M, and by up to 2.42 times
in TREC-1G compared with that of the n-gram index. Thus,
the size of the n-gram/2L-v index is reduced by up to 29%
(TREC-1G, v = 4) compared with that of the n-gram/2L-m
index.

Figures 15 and 16 show that the estimated mo (or vo) is
identical to the real mo (or vo). However, the real index size
ratio is shown to be 52–73% of the estimated one, showing a
larger amount of errors compared with Fig. 14. It is because
the inverted index, in real implementation, stores document
identifiers or m-subsequence identifiers in addition to offsets

123

Structural optimization of a full-text n-gram index 1501

(a) The estimated index size ratio
as m is varied.

(b) The real index size ratio
as m is varied.

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

momo - 1 momo - 13.5

2.5

1.5

0.5

0

1

2

3 2.5

1.5

0.5

0

1

2

3

4 5 6 4 5 6

Fig. 14 The estimated and real index size ratio in the PROTEIN databases when using m-subsequences

Fig. 15 The estimated and real
index size ratio in the TREC
databases when using
m-subsequences

mo - 1

(a) The estimated index size ratio
as m is varied.

(b) The real index size ratio
as m is varied.

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

mo - 1

mo mo

0
0.5

1
1.5

2
2.5

3
3.5

4 2.5

2

1.5

1

0.5

0
4 5 6 7 4 5 6 7

Fig. 16 The estimated and real
index size ratio in the TREC
databases when using
v-subsequences

vo

(a) The estimated index size ratio
as v is varied.

(b) The real index size ratio
as v is varied.

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

#P
ag

es
_n

-g
ra

m

#P
ag

es
_n

-g
ra

m
/2

L

vo
4

3.5
3

2.5
2

1.5
1

0.5
0

3 4 5 3 4 5
0

0.5

1

1.5

2

2.5

3

while we count only offsets in estimation. The identifier of a
document (or an m-subsequence) and offsets at which a term
occurs are maintained as a unit in a posting (see Fig. 3). Here,
the space required for identifiers is relatively larger in the
n-gram/2L index because the average number of offsets in a
posting is smaller than in the n-gram index, thus making the
estimation to deviate from the real one. This difference of the
average number of offsets is due to duplication of offsets in
the n-gram index and its elimination in the n-gram/2L index.

This tendency is more marked in Fig. 15 and 16 than in Fig. 14
because, in TREC data, a collection of magazines or papers,
the words or expressions are more frequently repeated.

Table 2 shows that the index size ratio increases as the
database size does. Here, the index size ratio is obtained by
using (mo − 1) as the length of m-subsequences or by using
vo as the base length of v-subsequences. This result confirms
our analysis in Sect. 4.2. When we use m-subsequences, as
the database size is varied by ten fold from 10 MB to 1 GB,

123

1502 M.-S. Kim et al.

Table 2 The index size ratio as
the database size is varied Data set 10 MB 100 MB 1 GB

PROTEIN 1.734 (mo = 4)† 1.847 (mo − 1 = 4) 1.877 (mo − 1 = 4)

TREC 1.281 (mo − 1 = 4) 1.677 (mo − 1 = 5) 1.878 (mo − 1 = 5)

1.437 (vo = 3) 1.841 (vo = 3) 2.417 (vo = 4)

the index size ratio increases by 2% in the PROTEIN dat-
abases, and by 21% in the TREC databases on the average
when m = (mo −1). Besides, when we use v-subsequences,
the index size ratio increases by 29% in the TREC databases
on the average when v = vo. Here, we use not (mo − 1)
but mo as the length of m-subsequences for PROTEIN-10M
since m must be longer than n and (mo −1) = 3 is not longer
than n = 3 in PROTEIN-10M. † The case when (mo−1) = 3
is not available.

6.2.2 Query performance

Figure 17a shows the query processing time of the n-gram
index and n-gram/2L index as the database size is varied
for the PROTEIN database. Here, we set the length of
m-subsequences to (mo − 1) to optimize the query perfor-
mance as mentioned in Sect. 4.3.1. As indicated by the time
complexity in Sect. 4.3, the n-gram/2L index significantly
improves the query performance compared with the n-gram
index. Further, we obtain a larger improvement as the data-
base size gets larger. Figure 17a shows that the improvement
in the query performance is 1.37 times in PROTEIN-100 MB
and 6.65 times in PROTEIN-1 GB.

Figure 17b and c show the number of page accesses and
query processing time as the query length is varied for PRO-
TEIN-1G. We note that they increase at a lower rate in the
n-gram/2L index than in the n-gram index as Len(Q) gets
longer. In Fig. 17b and c, as Len(Q) is varied from 3 to
18, the number of page accesses for the n-gram/2L index
increases only by 27% and the wall clock time only by 53%
on the average, while those for the n-gram index increase by
12.0 times and by 32.9 times, respectively. In effect, the wall
clock time—when considering queries shorter than six times
of n—is improved by up to 13.1 times compared with those
of the n-gram index.

Figure 18 shows the query performance in the TREC dat-
abases, showing a tendency similar to that in the PROTEIN
databases. We observe that the number of page accesses of
the n-gram/2L index is improved by up to 3.5 times, and the
wall clock time by up to 2.9 times compared with those of
the n-gram index.

Figure 19 shows the query processing times of the
n-gram-disjoint index and the n-gram/2L-m index as
the database size is varied for the PROTEIN databases. The
n-gram/2L-m index still outperforms the n-gram-disjoint
index. We observe that the number of page accesses of the

n-gram/2L-m index is improved by up to 2.1 times, and the
wall clock time by up to 1.9 times compared with those of
the n-gram-disjoint index.

Figure 20 shows the query processing times of the
n-gram-disjoint index, the n-gram/2L-m index, and the
n-gram/2L-v index as the database size is varied for
the TREC databases. As shown in Fig. 20, the query perfor-
mance of the n-gram-disjoint index tends to be close to that of
the n-gram/2L-m index. However, the query performance of
the n-gram/2L-v is still superior to that of the n-gram-disjoint
index. This result indeed indicates the effectiveness of using
v-subsequences. Figure 20b shows that the n-gram/2L-v
index (v = 4) improves the number of page accesses by 2.1
times over the n-gram/2L-m index (m = 5) and by 2.9 times
over the n-gram-disjoint index. Similarly, Fig. 20c shows that
the n-gram/2L-v index (v = 4) improves the wall clock time
by 2.3 times over the n-gram/2L-m index (m = 5) and by
2.0 times over the n-gram-disjoint index.

6.2.3 Comparison with the CSA

Figure 21 shows the number of page accesses and query pro-
cessing time as the query length is varied for PROTEIN-1G.
When the query length is short (e.g., Len(Q) = 3), we note
that the query performance of the CSA is much poorer than
that of the n-gram/2L index. However, as the query length
increases, we observe that the query performance of the CSA
tends to be close to or better than that of the n-gram/2L index.
The reason is that, as Len(Q) gets longer, the CSA reads less
position information (i.e., offsets) from the position array,
while the n-gram/2L index reads more offsets from more
posting lists. The number of offsets that the CSA reads is
proportional to the number of query results, which decreases
as Len(Q) gets longer.

We also note that the difference between the query perfor-
mance of the n-gram/2L index and that of the CSA is larger
in the wall clock time as in Fig. 21b than in the number of
page accesses as in Fig. 21a. This is due to random accesses
accompanying disk seeks frequently occurring in the CSA.
In the n-gram/2L-index, the offsets to access for processing
a query are consecutively stored in each index page and, at
the same time, the pages to access for processing a query
are consecutively stored on disk for each posting list. Thus,
the n-gram/2L-index obtains the effect of sequential access
and disk cache. However, in the CSA, the offsets to access
for processing a query are scattered over the position array.

123

Structural optimization of a full-text n-gram index 1503

(a) The query processing time
as the database size is varied.

(Len(Q): 3~18)

(b) The number of page accesses
as Len(Q) is varied.

(data set: PROTEIN-1G)

(c) The query processing time
as Len(Q) is varied.

(data set: PROTEIN-1G)

data size (Byte) query length Len (Q) query length Len (Q)

10M 100M 1G 3 6 9 12 15 18 3 6 9 12 15 18
0

5000

10000

15000

20000

W
al

l C
lo

ck
 T

im
e

(m
s)

W
al

l C
lo

ck
 T

im
e

(m
s)

of

 p
ag

e
ac

ce
ss

es

10

100

1000

10000

100000

0

5000

10000

15000

20000

25000

Fig. 17 The query performance for the PROTEIN databases

(a) The query processing time
as the database size is varied.

(Len(Q): 3~18)

(b) The number of page accesses
as Len(Q) is varied.
(data set: TREC-1G)

(c) The query processing time
as Len(Q) is varied.
(data set: TREC-1G)

query length Len (Q)query length Len (Q)data size (Byte)
3 6 9 12 15 18

0

10,000

20,000

30,000

40,000

W
al

l C
lo

ck
 T

im
e

(m
s)

of

 p
ag

e
ac

ce
ss

es

0

15000

30000

45000

60000

10

100

1000

10000

100000

W
al

l C
lo

ck
 T

im
e

(m
s)

10M 100M 1G 3 6 9 12 15 18

Fig. 18 The query performance for the TREC databases

(a) The query processing time
as the database size is varied.

(Len(Q): 3~18)

(b) The number of page accesses
as Len(Q) is varied.

(data set: PROTEIN-1G)

(c) The query processing time
as Len(Q) is varied.

(data set: PROTEIN-1G)

query length Len (Q)query length Len (Q)data size (Byte)

10M 100M 1G 3 6 9 12 15 18 3 6 9 12 15 18

10000

8000

6000

4000

2000

0

5000

4000

3000

2000

1000

0W
al

l C
lo

ck
 T

im
e

(m
s)

W
al

l C
lo

ck
 T

im
e

(m
s)

of

 p
ag

e
ac

ce
ss

es100000

10000

1000

100

10

Fig. 19 The query performance for the PROTEIN databases when using the n-gram-disjoint index and the n-gram/2L-m index

123

1504 M.-S. Kim et al.

(a) The query processing time
as the database size is varied.

(Len(Q): 3~18)

(b) The number of page accesses
as Len(Q) is varied.
(data set: TREC-1G)

(c) The query processing time
as Len(Q) is varied.
(data set: TREC-1G)

query length Len (Q)query length Len (Q)data size (Byte)

3 6 9 12 15 183 6 9 12 15 1810M 100M 1G
0

2,000

4,000

6,000

8,000

10,000

W
al

l C
lo

ck
 T

im
e

(m
s)

of

 p
ag

e
ac

ce
ss

es

25000

20000

15000

10000

5000

0

100000

10000

1000

100

10

W
al

l c
lo

ck
 ti

m
e

(m
s)

Fig. 20 The query performance for the TREC databases when using the n-gram-disjoint index and the n-gram/2L-v index

(a) The number of page accesses
as Len(Q) is varied.

(data set: PROTEIN-1G)

(b) The query processing time
as Len(Q) is varied.

(data set: PROTEIN-1G)

query length Len (Q)query length Len (Q)

3 6 9 12 15 18 21 24 273 6 9 12 15 18 21 24 27
100

1000

10000

100000

1000000

10000000

100

1000

10000

100000

1000000

10000000

W
al

l C
lo

ck
 T

im
e

(m
s)

of

 p
ag

e
ac

ce
ss

es

Fig. 21 Query performance for PROTEIN-1G when using the CSA and the n-gram/2L-m index

Thus, the CSA cannot take advantage of sequential access
and disk cache.

Figure 22 shows the query performance for TREC-1G,
showing a tendency similar to that for PROTEIN-1G. In con-
clusion, the n-gram/2L index outperforms the CSA when
Len(Q) is short (i.e., less than 15–20), and the CSA is sim-
ilar to or better than the n-gram/2L index when Len(Q) is
long (i.e., more than 15–20). That is, there exists some cross-
ing point. This result coincides with that of the experiments
done in work by Puglisi et al. [24], in which they proposed a
memory-based compressed n-gram index, compared it with
the compressed suffix array in a memory environment, and
found that their compressed n-gram index is better for short
query strings and worse for long query strings than the com-
pressed suffix array.

7 Related work

In this section, we briefly introduce prior art related to the
n-gram/2L index—especially, ones on the inverted index, the

n-gram index, and the two-level indexing approach. Further,
we also introduce the suffix array (or the suffix tree), which
is often compared with the inverted index.

Inverted index

Due to explosive use of text search engines such as Google
[4], a significant number of research results on the inverted
index, which is the essential component of the text search
engine, have been published over the last decade. On the
issue of reducing the index size, most research focused on
compressing posting lists. Compression of posting lists is
typically done by efficiently encoding gaps between docu-
ment identifiers [26], but in some cases is done by using
Lempel-Ziv parsing [10]. On the issue of improving sca-
lability and query throughput, research has been done on
building a distributed inverted index over a number of
machines [4,19]. This scheme is essential for commercial
systems that handle very large scale databases. A detailed
survey on the inverted index can be found in the paper by
Zobel and Moffat [34].

123

Structural optimization of a full-text n-gram index 1505

(a) The number of page accesses
as Len(Q) is varied.
(data set: TREC-1G)

(b) The query processing time
as Len(Q) is varied.
(data set: TREC-1G)

query length Len (Q) query length Len (Q)

3 6 9 12 15 18 21 24 27 3 6 9 12 15 18 21 24 27
100

1000

10000

100000

1000000

10000000

100000000

100

1000

10000

100000

1000000

10000000

100000000

of

 p
ag

e
ac

ce
ss

es

W
al

l C
lo

ck
 T

im
e

(m
s)

Fig. 22 Query performance for TREC-1G when using the CSA and the n-gram/2L-v index

n-Gram index

There have been a number of efforts to use the n-gram index
for various applications. The n-gram index has two major
advantages: language-neutral and error-tolerant. Since it is
language-neutral, the n-gram index is often used in infor-
mation retrieval for Asian languages such as Korean [15],
Japanese [33], and Chinese [7], where extraction of words
is not simple. Since it is error-tolerant, the n-gram index is
often used in approximate string matching, where the query
processing algorithm performs the following two steps: (1)
finding candidate documents (or substring) by searching the
n-gram index with n-grams extracted from a query string
(the filtration step); (2) doing refinement in order to find
final results by using online algorithms (the refinement step).
Approximate string matching algorithms using the n-gram
index are classified into two categories depending on the
filtration method [21]: (1) the algorithms that find docu-
ments in which some substrings of a query appear without
errors as candidate results [1,27,31]; (2) those that find can-
didate documents in which some substrings of a query appear
with a few errors as candidate results [12,23]. n-gram/2L-
approximation [12], which is a variation of the n-gram/2L
index proposed for approximate searching by the authors,
belongs to this category. More results on approximate string
matching can be found in the paper by Navarro et al. [21].

Two-level indexing approach

There have been some studies that use the two-level index-
ing approach. The block addressing scheme is often used for
reducing the size of the inverted index. This scheme divides
a text database into blocks and stores block offsets where the
n-gram appears instead of character offsets [2,16]. For query
processing, it first searches for blocks that a query appears,
and then, performs online search over the retrieved blocks
for finding exact positions. Although it performs query

processing in two steps, it does not use a real two-level index.
Some other approaches use the two different kinds of data
structures for indexing. For example, Cao et al. [5] uses a
hash table as the first-level index and a signature tree as the
second-level index for biological sequences.

Suffix array (or suffix tree)

For text search, the suffix array is also widely used. The suffix
array is inherently a memory-based index structure while the
inverted index is a disk-based one. The suffix array is suitable
for relatively small databases [34]. It has been pointed out as
a problem that the size of the suffix array tends to be large.
But, in recent years, a number of approaches that reduce its
size by compression have been reported. Most of them com-
press the index structure based on text entropy [8,17], but
some others do that based on Lempel-Ziv parsing [11]. In
spite of compression, the suffix array might not always fit in
main memory. Some approaches touched the issue of using
the suffix tree on disk [9], but there is very little work on this
issue yet. More work on the suffix array can be found in the
survey paper by Navarro and Makinen [22].

8 Conclusions

In this paper, we have proposed the n-gram/2L index that sig-
nificantly reduces the size and improves the query
performance compared with the n-gram index. The novelty
of our approach lies in finding the redundancy of the posi-
tion information that exists in the n-gram index and elim-
inating that redundancy. To eliminate the redundancy, we
construct the inverted index in two steps: (1) extracting n −1
overlapping m-subsequences (or v-subsequences) from doc-
uments and building the back-end index; and (2) extracting
n-grams from those subsequences and building the front-
end index. Here, v-subsequences, which are variable-length

123

1506 M.-S. Kim et al.

subsequences, allow us to further enhance the size and the
query performance of the n-gram/2L index by exploiting
words in extracting subsequences for natural language
documents.

We have theoretically analyzed the properties of the
n-gram/2L index. First, we have formally proven in Lemma 2
that the redundancy of the position information that exists in
the n-gram index is due to a non-trivial MVD. Then, we have
proven in Lemma 3 and Theorem 2 that our index is derived
by the relational normalization process that decomposes the
n-gram index into 4NF. Second, we have analyzed the space
complexity and proposed the model for determining the opti-
mal length of m (i.e., mo) minimizing the index size. Since the
space complexity of our index is O(|S|(avgngram + avgdoc))

and that of the n-gram index is O(|S|(avgngram × avgdoc)),
the reduction of the index size becomes more marked as the
database size gets larger. Third, we have analyzed the time
complexity. Since the time complexity is shown to be the
same as the space complexity, the improvement of the query
performance becomes more marked as the database size gets
larger. Besides, we have found out that we can speed up query
processing by small sacrifice in the index size (i.e., by using
(mo − 1) as the length of m-subsequences.) Fourth, we have
shown that the query processing time increases only very
slightly as the query length gets longer by using Eq. (9).

We have performed extensive experiments for the size and
query performance of the n-gram/2L index varying the data
set, database size, query length, m-subsequences length, and
v-subsequences length. We have used (mo − 1) as the length
of m-subsequences to speed up query processing. Experi-
mental results using real text and protein databases of 1 GB
show that the size of the n-gram/2L index is reduced by up
to 1.9 (TREC-1G, m = 5 and PROTEIN-1G, m = 4) times
and, at the same time, the query performance—when con-
sidering queries shorter than six times of n—is improved by
up to 2.9 (TREC-1G, m = 5)–13.1 (PROTEIN-1G, m = 4)
times compared with those of the n-gram index. For text
databases, we have shown that using v-subsequences further
improves the size and query performance for text databases.
Experimental results show that the size of the n-gram/2L-v
index is reduced by up to 29% (TREC-1G, v = 4) and, at
the same time, the query performance is improved by up to
2.27 (TREC-1G, v = 4) times compared with those of the
n-gram/2L-m index (TREC-1G, m = 5). We have also com-
pared the query performance of the n-gram/2L index with
that of Makinen’s CSA [17] stored in disk. Experimental
results show that the n-gram/2L index outperforms the CSA
when Len(Q) is short (i.e., less than 15–20), and the CSA is
similar to or better than the n-gram/2L index when Len(Q)
is long (i.e., more than 15–20).

Overall, these results indicate that the n-gram/2L index is
a new structure that can replace the n-gram index in many
applications including information retrieval.

Acknowledgment A preliminary version of this paper has appeared
in the proceedings of the 31th International Conference on Very Large
Data Bases held in Trondheim, Norway, in August/September 2005
[13]. We have significantly extended this version with the new notion
of the v-subsequence, algorithms, and extensive experiments includ-
ing comparison with the compact suffix array [17]. We would like to
thank the anonymous reviewers for their incisive comments that made
the paper more complete and readable. This work was supported by the
Korea Science and Engineering Foundation (KOSEF) and the Korean
Government (MOST) through the NRL Program (No. R0A-2007-000-
20101-0).

References

1. Baeza-Yates, R., Navarro, G.: A practical q-gram index for text
retrieval allowing errors. CLEI Electron. J. 1(2), (1998)

2. Baeza-Yates, R., Navarro, G.: Block addressing indices for
approximate text retrieval. J. Am. Soc. Inf. Sci. 51(1), 69–
82 (2000)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval.
ACM Press (1999)

4. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: the
google cluster architecture. IEEE Micro 23(2), 22–28 (2003)

5. Cao, X., Li, S.C., Tung, A.K.H.: Indexing DNA sequences using
q-grams. In: Proc. Int’l Conf. on Database Systems for Advanced
Applications (DASFAA). Beijing, pp. 4–16 (2005)

6. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems,
4th edn. Addison Wesley (2003)

7. Gao, J., Goodman, J., Li, M., Lee, K.: Toward a unified approach
to statistical language modeling for Chinese. ACM Trans. Asian
Lang. Inf. Process. (TALIP) 1(1), 3–33 (2002)

8. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. In: Proc.
32nd ACM Symposium on Theory of Computing (STOC), pp.
397–406 (2000)

9. Karkkainen, J., Rao, S.: 7. Full-text indexes in external memory.
In: Algorithms for Memory Hierarchies pp. 149–170 (2003)

10. Karkkainen, J., Sutinen, E.: Lempel-Ziv index for q-grams. Algo-
rithmica 21(1), 137–154 (1998)

11. Karkkainen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-
size index structures for string mathcing. In: Proc. 3rd South
American Workshop on String Processing (WSP), pp. 141–155
(1996)

12. Kim, M., Whang, K., Lee, J.: n-gram/2L-approximation: a two-
level n-gram inverted index structure for approximate string
matching. J. Comput. Systems Sci. Eng. (2007) (to appear)

13. Kim, M., Whang, K., Lee, J., Lee, M.: n-Gram/2L: a space and
time efficient two-level n-gram inverted index structure. In: Proc.
the 31th Int’l Conf. on Very Large Data Bases (VLDB), Trond-
heim, pp. 325–336 (2005)

14. Kukich, K.: Techniques for automatically correcting words in
text. ACM Comput Surv 24(4), 377–439 (1992)

15. Lee, J.H., Ahn J.S.: Using n-grams for korean text retrieval. In:
Proc. Int’l Conf. on Information Retrieval. ACM SIGIR, Zurich,
pp. 216–224 (1996)

16. Lehtinen, O., Sutinen, E., Tarhio, J.: Experiments on block index-
ing. In: Proc. 3rd South American Workshop on String Processing
pp. 183–193 (1996)

17. Makinen, V.: Compact suffix array. In: Proc. 11th Annual Sym-
posium on Combinatorial Pattern Matching (CPM), pp. 305–319
(2000)

18. Mayfield, J., McNamee, P.: Single N -gram stemming. In: Proc.
Int’l Conf. on Information Retrieval. ACM SIGIR, Toronto, pp.
415–416 (2003)

123

Structural optimization of a full-text n-gram index 1507

19. Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building
a distributed full-text index for the Web. ACM Trans. Inf. Sys-
tems 19(3), 217–241 (2001)

20. Miller, E., Shen, D., Liu, J., Nicholas, C.: Performance and sca-
lability of a large-scale N -gram based information retrieval sys-
tem. J. Digital Inf. 1(5), 1–25 (2000)

21. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Index-
ing methods for approximate string matching. IEEE Data Eng
Bull 24(4), 19–27 (2001)

22. Navarro, G., Makinen, V.: Compressed full-text indexes. Tech-
nical report TR/DCC-2006-6, Department of Computer Science,
University of Chile, (2006). (accepted to ACM Computing Sur-
veys)

23. Navarro, G., Sutinen, E., Tanninen, J., Tarhio, J.: Indexing text
with approximate q-grams. In: Proc. 11th Annual Symposium on
Combinatorial Pattern Matching (CPM), pp. 350–363 (2000)

24. Puglisi, S., Smyth, W., Turpin, A.: Inverted files versus suf-
fix arrays for locating patterns in primary memory. In: Proc.
13th Symposium on String Processing and Information Retrieval
(SPIRE), Glasgow, pp. 122–133 (2006)

25. Ramakrishnan, R.: Database Management Systems. McGraw-
Hill, New York (1998)

26. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression
of inverted indexes for fast query evaluation. In: Proc. Int’l Conf.
on Information Retrieval, ACM SIGIR, Tampere, pp. 222–229
(2002)

27. Sutinen, E., Tarhio, J.: Filtration with q-samples in approximate
string matching. In: Proc. 7th Annual Symposium on Combina-
torial Pattern Matching (CPM), pp. 50–63 (1996)

28. Ullman, J.D.: Principles of Database and Knowledge-Base Sys-
tems, Vol. I. Computer Science Press, USA (1988)

29. Whang, K., Lee, M., Lee, J., Kim, M., Han, W.: Odysseus:a high-
performance ORDBMS tightly-coupled with IR features. In: Proc.
21st IEEE Int’l Conf. on Data Engineering (ICDE), Tokyo, pp.
1104–1105, (2005) (this paper received the Best Demonstration
Award)

30. Williams, H.E.: Genomic information retrieval. In: Proc. 14th
Australasian Database Conferences, Adelaide, pp. 27–35 (2003)

31. Williams, H.E., Zobel, J.: Indexing and retrieval for genomic dat-
abases. IEEE Trans. Knowl. Data Eng. 14(1), 63–78 (2002)

32. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd edn., Morgan
Kaufmann (1999)

33. Yasushi, O., Masajirou, I.: A new character-based indexing
method using frequency data for Japanese documents. In: Proc.
Int’l Conf. on Information Retrieval, pp. 121–129. ACM SIGIR,
Seattle (1995)

34. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM
Comput Surv 38(2), (2006)

123

	Structural optimization of a full-text n-gram indexusing relational normalization
	Abstract
	1 Introduction
	2 Preliminary
	3 n-gram/2L index
	3.1 Index structure
	3.2 Index building algorithm
	3.3 Query processing algorithm

	4 Formal analysis of the n-gram/2L index
	4.1 Formalization
	4.2 Analysis of the index size
	4.3 Analysis of the query performance

	5 Implementation issues
	6 Performance evaluation
	6.1 Experimental data and environment
	6.2 Results of the experiments

	7 Related work
	8 Conclusions
	Acknowledgment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

