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Abstract—Digital contact tracing is an effective solution to
prevent such a pandemic, but the low adoption rate of a required
mobile app hinders its effectiveness. A large collection of cellular
trajectories from mobile subscribers can be an out-of-the-box
solution that is free from the low adoption issue, but has been
overlooked due to its low spatial resolution. In this paper, to
increase the resolution of this cellular trajectory, we present a
new problem that estimates the user’s visited places at the point-
of-interest (POI) level, which we call POI-level cellular trajectory
reconstruction. We propose a novel algorithm, Pincette, that
accomplishes more accurate POI reconstruction by leveraging
various external data such as road networks and POI contexts.
Specifically, Pincette comprises multi-view feature extraction and
GCN-LSTM-based POI estimation. In the multi-view feature
extraction, Pincette extracts three complementary features from
three views: efficiency, periodicity, and popularity. In the GCN-
LSTM-based POI estimation, these three views are seamlessly
integrated, where spatio-temporal periodic patterns are captured
by graph convolutional networks (GCNs) and an LSTM. With
extensive experiments on two real data collections of two cities,
we show that Pincette outperforms four POI estimation baselines
by up to 21.20%. We believe that our work sheds light on the
use of cellular trajectories for digital contact tracing. We release
the source code at https://github.com/kaist-dmlab/Pincette.

I. INTRODUCTION

A. Motivation

Digital contact tracing, the process of identifying persons
who may have contact with a confirmed case through an au-

tomated tracking system [1], [2], has been actively developed

to assist contact tracers (i.e., public health authorities). As
opposed to manual contact tracing, it facilitates very timely
and accurate self-quarantine so that expected to lead to the

sustained epidemic suppression [3]. A typical approach for

digital contact tracing is to download an app on the user’s

mobile device which records the locations where the user

visited or other people whom they spent time with, using

location-finding technologies such as Bluetooth and Global

Positioning System (GPS). Most notably, Google and Apple

jointly created the Exposure Notifications System in May

2020 [4]. To stop the epidemic, this approach requires more
than 60% uptake in the population [5], but the real adoption
rate has been reported to be much lower, e.g., less than 10%
in the U.S., mainly due to privacy concerns. This situation

highlights the importance of a complementary tracing system

that can cover a wide range of users.

∗ Jae-Gil Lee is the corresponding author.

In this regard, cellular network data, which is generated
by interactions between mobile devices and cell towers, has

become a good alternative resource for digital contact tracing,

considering that it collects the location of a large popula-

tion without any additional efforts such as app installation.
Moreover, thanks to the advent of 4G and 5G networks,

its temporal resolution (i.e., the amount of time needed for
location updates) has been greatly improved, reaching only

90 seconds [6]. Nevertheless, the use of cellular network data
is still hindered by its low spatial resolution, resulting from
the localization errors of up to a few hundred meters in urban

areas. The true location of the user is simply abstracted to that

of a nearby cell tower in cellular network data.

To cope with this challenge, cellular trajectory reconstruc-
tion has been widely studied to infer a user’s true locations,
thereby improving the understanding of human mobility. The

representative approach is to reconstruct the user’s actual

moving path by performing a map matching algorithm on

the road network [6], [7]. However, such moving path recon-

struction only supports coarse-grained contact tracing; finding

two similar moving paths does not necessarily guarantee a
contact between them. For example, if a person follows the

same route that another person went through a few minutes

ago, there is no actual contact between them, though their
moving similarity is very high. To pursue fine-grained contact
tracing of the infectious disease, the reconstruction should

configure the point-of-interest (POI) where users stay together
with others because the infectious disease spreads primarily
by indoor transmission.

B. Research Problem and Pincette

In this paper, we first present a new problem, named POI-
level cellular trajectory reconstruction, that aims to estimate
truly visited POIs from a cellular trajectory. There are two

main challenges for this problem: (i) each user has a complex
POI visiting pattern; and (ii) the coarse-grained positioning
ability of a cellular trajectory makes dozens of POI candidates.

We propose a novel framework Pincette that leverages various
external data including road networks, public transport routes,

and POI contexts. To precisely capture the complex POI

visiting pattern and conduct fine-grained POI estimation, as

illustrated in Figure 1, Pincette leverages the complementary
information between the three multi-view features:
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Fig. 1: Main intuition of Pincette. Suppose that a user visits a food area to eat dinner after leaving work before going back
home. (1) In the efficiency-view, the user may not visit p1 since his/her cellular trajectory is not efficient to get to p1. (2) In
the periodicity-view, the user may not visit p2 since it is an office and thus out of periodicity. (3) In the popularity-view, since
p4 is more popular than p3, the user probably visits p4.

1. Efficiency-view features help POI reconstruction by a

widely known observation that people tend to take an effi-

cient path on the road network when they move in or out to a

POI. With the road network and even public transport routes,

it is possible to estimate how much a cellular trajectory is

efficient to move in or out to a POI.

2. Periodicity-view features aid in POI reconstruction based
on the spatio-temporal periodic pattern in people’s move-

ment. By estimating the periodic POI-type transition pattern

of people with POI contexts, it is possible to infer which

POI type the user of a cellular trajectory visited in a specific

time interval.

3. Popularity-view features enhance POI reconstruction under
the assumption that people tend to visit popular POIs more

often. With the useful popularity features in POI contexts

such as 5-star user ratings, it is possible to estimate how

much a POI is visitable by users.

To fully take advantage of the multi-view features essential

for our problem, Pincette comprises two steps.

• Multi-view Feature Extraction: Discriminative features are
extracted for each view. (1) For the efficiency-view, the
various distances of a trajectory to a POI based on its

estimated transportation type are extracted. If a distance is

high, the trajectory is not an efficient path to the POI. (2)
For the periodicity-view, the local industry type and user’s

hourly flow of each cell tower are extracted. Accordingly,

periodic POI type transition patterns can be estimated. (3)
For the popularity-view, the properties that well explain a

POI’s popularity including its rating, number of comments,

and size are extracted.

• GCN-LSTM-based POI Estimation: To effectively re-
construct truly visited POIs from the extracted multi-view

features, we propose a deep neural network (DNN)-based

POI estimation model. Specifically, a graph convolutional

network (GCN) learns spatial industry types of each cell, and

then periodic type transition patterns are learned by a long

short term memory (LSTM). Finally, the model estimates

the POI visit score of a trajectory from the integrated

representation of the three views.

II. RELATED WORK

A. Digital Contact Tracing

A recent study [3] shows that epidemic control with

digital contact tracing apps using mobile devices plays an

essential role in mitigating the spread of highly contagious

diseases such as COVID-19. Many public health authorities

and big tech companies have developed digital contact tracing

apps using wireless technologies such as Bluetooth Low

Energy (BLE) [4] and GPS [1]. Notably, Google and Apple

jointly announced a new exposure notification system based

on decentralized privacy-preserving proximity tracing [4]. The

Germany government developed Corona-Warn-App [8] using
BLE to exchange random codes between devices. In Bulgaria,

ViruSafe generates heat maps of potentially infected people via
a location tracker based on GPS coordinates. However, a low

user adoption rate of BLE- or GPS-based contact tracing apps,

which is mainly due to privacy concerns, limits the potential

benefits expected on epidemic control [9].

B. Cellular Trajectory Reconstruction

Conventional studies use call detail record (CDR) data,

where the location of the cell tower to which each user is

being connected is recorded only when a call is made. The

Voronoi diagram is commonly employed to infer the coverage

of a cell tower. Algizawy et al. [10] utilized map-matching

to find exit road segments at Voronoi cell boundaries. Chen

et al. [11] factorized cellular trajectory tensors according to

time contexts such as weeks, days, and time. The main focus of

these approaches is to reconstruct temporally missing locations
caused by the low sampling rate of the CDR. Recently, with

a widespread of 4G and 5G, cellular trajectories are being

collected more frequently, thereby leading to more precise

trajectory reconstruction. Huang et al. [7] and Shen et al. [6]

proposed hidden-Markov model (HMM)-based map-matching

models to infer the road segments on which each moving

trajectory passed; their methods can be used to leverage useful

patterns in moving trajectories, e.g., for similar trajectory
retrieval. However, for digital contact tracing, reconstructing

a location where a user stays together with others is more
important, which is largely neglected by the existing literature.
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TABLE I: Summary of the notation.

Notation Description
T the set of all cellular trajectories

τ a cellular trajectory τ = {c1,· · ·, ct}
c a cell composed of 〈id, longitude, latitude〉
Pc the set of POIs belonging to a cell c
p a POI under consideration

Y〈τ,p,c〉 whether p in c is visited by τ (1: visited, 0: unvisited)
G a road network of a node set N and an edge set E
B a set of public transport routes (e.g., bus)

III. PROBLEM SETUP

A. Input Datasets and Notation

We here denote the notation regarding four input datasets–

a cellular trajectory from a mobile carrier and three external

datasets including POI contexts, road networks, and public

transport routes. Table I summarizes the notation.

Cellular Trajectory: A user’s cellular trajectory τ =
{c1, c2,· · ·, ct} is a sequence of connected cell towers in a
certain period of time. Each connected cell ct at time t consists
of 〈id, longitude, latitude〉. The time interval between two
consecutive cells may be irregular in a range of few minutes.

POI Context: Pc is the set of all POIs belonging to a cell

c, which are potential candidates to visit when the user’s
trajectory τ is connected to the cell c. Each POI p ∈ Pc

can have various attributes such as the industry type (e.g.,
residential or commercial), ratings by users, and building size.

Road Network: A road network G = (N , E) consists of a
node set N and an edge set E , where the element of N is

the start or end point of a road segment (e.g., intersection) and
that of E is the road segment between two nodes. The road
network greatly helps infer visited POIs since people usually

go along the road before and after visiting a POI.

Public Transport Route: A public transport route is a se-
quence of stations. The set B of all routes contains many
transport types such as bus and subway. Since, in urban areas,

people often use public transport before and after visiting a

POI, this dataset serves a complementary information source.

B. POI-level Trajectory Reconstruction

Given a user’s cellular trajectory, a stay cell in Definition 1

is regarded as the target cell to find a visited POI in Definition

2. Accordingly, the problem of POI-level cellular trajectory
reconstruction is described in Definition 3.

Definition 1. (STAY CELL) A cell c ∈ τ is a stay cell if a user
stays more than ε minutes, where τ is the user’s cell trajectory.
We denote the set of stay cells in the trajectory as τ∗ ⊆ τ . �
Definition 2. (VISITED POI) A POI p is a visited POI if the
user visited a POI p belonging to a stay cell c, where p ∈ Pc

and c ∈ τ . For each p ∈ Pc and c ∈ τ∗ ⊆ τ , Y〈τ,c,p〉=1 if p
is a visited POI, and Y〈τ,c,p〉 = 0 otherwise. �
Definition 3. (POI-LEVEL RECONSTRUCTION) The POI-
level cellular trajectory reconstruction is, given a set T of

all users’ cellular trajectories, to identify all visited POIs from

every τ ∈ T . �

TABLE II: Summary of the extracted multi-view features.

View Feature Description

XE

f1, f6 Transportation mode of τ (private or public)

f2, f7
Dynamic time warping (DTW) distance of τ
to the shortest road path to or from a POI p

f3, f8
Euclidean distance of a POI p to the preceding
or following cell in τ

f4, f9
Euclidean distance of a POI p to the nearest
station on the transport route taken by τ

f5, f10
Euclidean distance of a POI p to the nearest
station not on the transport route taken by τ

XI f11
Industry-type frequency vector of a cell c (e.g.,
(food: 100, office: 50, · · · ))

f12 Number of people in a cell c at time t

XP

f13 Industry type of a POI p (e.g., food)
f14 Average rating of a POI p
f15 Number of comments on a POI p
f16 Size (i.e., area) of a POI p

IV. MULTI-VIEW FEATURE EXTRACTION

Given a cellular trajectory τ ∈ T , for each p ∈ Pc and

c ∈ τ∗ ⊆ τ , (1) the efficiency-view featureXE
〈τ,p〉 is derived for

each pair of the trajectory τ and a POI p, (2) the periodicity-
view feature XI

〈c〉 is derived for each stay cell c, and (3) the
popularity-view feature XP

〈p〉 is derived for each POI p. Table
II summarizes the extracted multi-view features.

A. Efficiency-view Feature

People tend to take the most efficient path when they visit

POIs [12]. Thus, the feature indicating how much a user’s

trajectory is efficient to arrive at the POI helps the visited

POI estimation. In addition, the optimal path to the visited

POI differs depending on the transportation mode. When the

user moves via private transport, e.g., a car, the visited POI is
located near the shortest path on the road network, whereas

when via public transport, e.g., a bus and a subway, it is rather
located near one of the efficient public transport routes.

A user’s cellular trajectory τ can be split into two types of
sub-trajectories for each stay cell: the in-coming sub-trajectory
moving into the cell; and the out-going sub-trajectory moving
out from the cell. Hence, to benefit from the aforementioned

property, we generate the efficiency-view features by consider-

ing the transport mode of both sub-trajectories; f1–f5 and f6–
f10 for in-coming and out-going sub-trajectories, respectively.
f2, f3, f7, and f8 are designed for private transport, and f4,
f5, f9, and f10 are for public transport. We extracted f1 and
f6 by adopting a transport mode detection algorithm [13].

B. Periodicity-view Feature

People have spatio-temporal periodic patterns when they

visit POIs [14]. The feature representing the preference change

of a user’s visited areas can help estimate visited POIs. A

periodic pattern, e.g., an office area → a dining area → a

residential area, is very helpful to reduce the candidates for

visited POIs. To discover cell-level periodicity, we build two
kinds of periodicity-view features (f11 and f12) for character-
izing each cell c. f12 is derived differently for the visit time
t. A sequence of these two features for the previous, current,
and next stay cells is fed to the GCN-LSTM-based model.
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Fig. 2: High-level architecture of Pincette.

C. Popularity-view Feature

People tend to visit popular POIs more often than unpopular

ones [15]. Thus, the feature indicating the popularity of a

POI can enhance the quality of visited POI estimation. We

extract four kinds of popularity-view features (f13–f16), such
as industry type, POI rating, number of comments, and area

size, for every POI p. Overall, the higher the values of f14–f16
for a POI p, the higher probability of a user visiting it.

V. METHODOLOGY: Pincette

Figure 2 illustrates the overall architecture of Pincette. It
receives the three multi-view features as inputs and performs

the GCN-LSTM-based POI estimation to predict the score of

a user visiting each POI in a stay cell.

A. Three Main Components

The GCN-LSTM-based model in Pincette consists of spatial
encoder, temporal encoder, and visit estimator. The first two
modules capture complex spatio-temporal periodic patterns

from the periodicity-view feature; the third module aggregates

all multi-view features and makes the final prediction.

1) Spatial Encoder (SE): The spatial encoder is a GCN-
based encoder [16], which aggregates the spatial movement
patterns of users across cells. In the GCN, a node refers to a

cell, and an edge indicates the adjacency between two cells,

e.g., Voronoi boundary. The SE receives two inputs: (1) all
periodicity-view features XI

〈·〉 as its input node feature matrix
and (2) the adjacency matrix A between the cells as its input
binary edge feature. Then, the SE is formulated as

SE = GCN(XI
〈·〉, A;W )=

L∏
l=1

H(l)

s.t. H(l+1) = σ(D̃− 1
2 ÃD̃

1
2H(l)W (l)),

(1)

where H(l) is the matrix of the l-th layer activations, i.e.,
H(0)=XI

〈·〉, W
(l)∈Rm×k is the weight matrix of the l-th layer

with input size m and output size k, Ã=A+I is the adjacency
matrix with self-connection, D̃ii=

∑
j Ãij is a diagonal matrix

for normalization, and σ(·) is the ReLU activation.
2) Temporal Encoder (TE): The temporal encoder is a

Bi-LSTM-based encoder [17], which captures the periodic
POI visit patterns of users. Since spatial patterns are help-
ful for identifying people’s temporal movement patterns, the

output node features extracted from the SE are used as

an input sequence to the TE. Specifically, for a trajectory

τ∗ = {ct−w, · · · , ct, · · · , ct+w} centered at the current cell
ct, the TE is formulated as

TE〈τ∗,ct〉 = Bi-LSTM(Seq〈τ∗,ct〉)
s.t. Seq〈τ∗,ct〉=

[
SE〈ct−w〉, · · · , SE〈ct+w〉

]
,

(2)

where SE〈c〉 represents the output node feature of the cell c,
which is equivalent to the corresponding row vector of the

output matrix SE in Eq. (1). Seq〈τ∗,ct〉 is a sequence of all
output node features in τ∗.
3) Visit Estimator (VE): The visit estimator is a fully

connected (FC) layer, which predicts the visit probability of

each POI in a stay cell. To use all three multi-view features, the

output of the TE is concatenated with efficiency-view feature

XE
〈τ,p〉 and popularity-view feature X

P
〈p〉. The combined fea-

tures are fed to the FC layer as its input. The visit probability

for a POI p in a stay cell c ∈ τ∗ is estimated by

Ŷ〈τ,c,p〉=Sigmoid
(
FC

(
Concat(XE

〈τ,p〉,TE〈τ∗,c〉, XP
〈p〉)

))
,

(3)

where TE〈τ∗,c〉 represents the output periodic patterns in-
volved with c ∈ τ∗ in Eq. (2). Accordingly, 0 ≤ Ŷ〈τ,c,p〉 ≤ 1,
and it is used to judge whether p is a visited POI.

B. Loss Function for Training

Because the target variable Y〈τ,c,p〉 in Definition 2 is bi-
nary, we adopt the binary cross entropy (BCE) loss, which is

computed for each triple 〈τ, c, p〉, i.e., Ŷ〈τ,c,p〉 in Eq. (3), by

�(τ, c, p) =
1

|Pc|
∑
p∈Pc

BCE(Y〈τ,c,p〉, Ŷ〈τ,c,p〉), (4)

where BCE(Y, Ŷ ) = Y log Ŷ + (1− Y ) log(1− Ŷ ). The loss
in Eq. (4) is aggregated for all stay cells in a user’s trajectory

τ∗ and then for all user trajectories in the mini-batch M to

obtain the final loss L,

L(M) =
1

|M|
∑

τ∗∈M

1

|τ∗|
∑
c∈τ∗

�(τ, c, p). (5)

VI. EXPERIMENTS

A. Data Collections

Table III summarizes the statistics of the two data col-

lections. Each data collection contains human mobility (i.e.,
trajectories), cell-tower information, POI information, and

road and public transport networks.

1) Data Collection for Beijing:
• GeoLife [18] is a GPS trajectory dataset provided from the
GeoLife project by Microsoft Research Asia. It contains

over 20 million GPS data points of 17,621 trajectories of

182 users collected in Beijing from 2007 to 2012.

• OpenCellID [19] is a open source project that collects GPS
coordinates and location IDs of cell towers in the world. We

used the GPS coordinates of 30,254 cell towers in Beijing.

• OpenStreetMap is an open-source project that provides
various types of geographic data. We obtained the road
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TABLE III: Summary statistics of the data collections for

Beijing and Chania. E[|Pc|] (or E[
∑

YPc ]) is the number of
POIs (or true visited POIs) in a cell on average.

Data # Points # Users # Stays E[|Pc|] E[
∑

YPc ]
Beijing 20M 182 11,111 15.14 1.34
Chania 3M 10 505 42.71 1.22

networks, bus and subway routes, and locations and sizes

of the buildings in Beijing through the Overpass API.

• BaiduMaps is a web-mapping application that provides rich
information on POIs. We used the locations, industry types,

ratings, and comment counts of the POIs in Beijing.

2) Data Collection for Chania (in Greece):
• MySignals [20] is a cellular trajectory dataset with mapped
GPS coordinates. It contains over 3 million cell-GPS data

points of 10 users collected in Chania from 2012 to 2013.

• OpenStreetMap [19] was used again, and the same kinds
of information were obtained for Chania.

• GoogleMaps is a web-mapping application provided by
Google. We used the locations, industry types, ratings, and

comment counts of the POIs in Chania.

3) Preprocessing for Beijing: We carefully converted the
GPS trajectories in GeoLife into cellular trajectories and

true visited POI labels, by using the cell tower information

in OpenCellID and the POI information in BaiduMaps. We

considered only the center area of Beijing (40km × 40km)
covering around 75% of data in GeoLife.

• Cellular Trajectory: A sequence of 〈longitude, latitude〉 in a
GPS trajectory was transformed to a sequence of cell tower

IDs, using the Voronoi diagram as in the relevant work [10],

[11]. A Voronoi cell represents a connection range of a cell

tower, so that the GPS points contained in the Voronoi cell

are converted to the corresponding cell tower ID.

• True Visited POI: Given a stay cell, a POI is marked as the
true visited POI if it is closest to the GPS point. For each

of 11, 111 stay cells, 1.34 POIs were marked as ”visited”
out of 15.14 POIs on average.

4) Preprocessing for Chania (in Greece): Contrary to the
data preprocessing procedure for Beijing, we only extracted

true visited POI labels using the MySignals GPS-cellular

trajectory dataset, because MySignals is a genuine cellular
trajectory dataset with mapped GPS coordinates. Given a stay

cell, a POI is marked as the true visited POI if it is closest

to the GPS point. For each of 505 stay cells, 1.22 POIs were
marked as “visited” out of 42.71 POIs on average.

B. Experiment Setting

1) Baselines: Since our work is the first attempt to re-
construct the cellular trajectories at POI-level, there exists

no previous algorithm that can be naturally employed in

our problem. For thorough comparison with Pincette, we
evaluated two heuristic rule-based POI estimation algorithms,

denoted RULEE and RULEP , a Markov transition model

based algorithm, denoted MTM I , and a slight modification

of a HMM-based road-level cellular trajectory reconstruction

algorithm [6], denoted CellSim+. RULEE (or RULEP )

focuses on only the efficiency view (or the popularity view).

• RULEE uses the inverse of the sum of the features f2
to f10 in the efficiency view in Table II as the POI visit
probability, assuming that people tend to follow efficient

ways when visiting POIs.

• RULEP uses the multiplication of the features f14 to f16 in
the popularity view in Table II as the POI visit probability,

assuming that people tend to visit popular POIs.

• MTM I builds a Markov transition probability matrix from

the feature f11 in the periodicity view in Table II, assuming
that people have periodic patterns of POI type transitions.
Given the previous and next cells, MTM I uses the type

prediction probability from the Markov transition model as

the POI visit probability. Since the POIs of the same type get

the same visit probability, we randomly assign the ranking

among the POIs of the same type to break a tie.

• CellSim+ [6] was originally designed to infer multiple

road segments of moving trajectories by map matching with

a rule-based HMM. We reconstruct multiple road segments

from the cellular trajectories following the original paper,

and then use the inverse of the vertical distance from the

estimated road segment as the POI visit probability.

2) Evaluation Metrics: We used four commonly-used
ranking accuracy metrics [21]: Precision@k, Recall@k,
F1-score@k, and normalized discounted cumulative

gain (NDCG)@k. For all metrics with varying k, higher
scores indicate more accurate prediction results.

3) Training Configuration: The entire data in each collec-
tion is divided into the training set and the test set with the ratio

of 80:20 in the chronological order. We set the stay threshold

ε to be 30 minutes. Pincette was implemented using PyTorch
1.2.0 and executed on a single NVIDIA Titan Volta GPU.

The Adam optimizer with a learning rate of 0.01 and a batch
size of 32 are used to train Pincette. Only w, the length of a
window, and L, the number of hidden layers in the GCN of the
spatial encoder, need to be tuned for Pincette, and we simply
set both hyperparameters to be 1 because the duration of each
cellular trajectory is typically not very long. For MTM I and

CellSim+, we used the default or best hyperparameter values

suggested in the original papers. For reliable evaluation, we

reported the average of five repetitions in each test.

C. Overall Accuracy Comparison

Table IV shows the ranking accuracy results of the five

algorithms including Pincette on the two data collections.
Overall, Pincette achieved the highest ranking accuracy in
all metrics on both data collections, thanks to the sophisti-

cated incorporation of the multi-view features. Meanwhile,

CellSim+ achieved the second best ranking accuracy. For

each data collection, Pincette improved the accuracy of the
state-of-the-art algorithm, CellSim+, by up to 21.20% and

14.62%, respectively. Also, the overall performance on the
Beijing collection is higher than that of the Chania collection,

because the former has a larger number of samples (#Stays
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TABLE IV: Overall accuracy comparison on two data collections (the best results are in bold, the second best results are

underlined, and the % improvements over the second best are in italic).

Metrics precision recall f1-score NDCG

Data Method @1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

Beijing

RULEE 0.212 0.309 0.210 0.189 0.531 0.631 0.200 0.391 0.315 0.241 0.405 0.501

RULEP 0.201 0.296 0.201 0.184 0.515 0.628 0.192 0.376 0.304 0.219 0.391 0.522

MTMI 0.187 0.280 0.190 0.143 0.487 0.600 0.162 0.356 0.289 0.173 0.355 0.486

CellSim+ 0.224 0.334 0.245 0.199 0.558 0.650 0.211 0.418 0.355 0.255 0.431 0.551
Pincette 0.251 0.350 0.257 0.211 0.574 0.663 0.229 0.435 0.370 0.309 0.456 0.573
%improve 12.02 4.69 5.04 5.76 3.01 2.04 8.62 4.06 4.20 21.20 5.95 4.00

Chania
(in Greece)

RULEE 0.125 0.064 0.035 0.121 0.183 0.183 0.123 0.095 0.059 0.129 0.159 0.159

RULEP 0.062 0.041 0.022 0.078 0.104 0.104 0.069 0.059 0.036 0.068 0.068 0.087

MTMI 0.048 0.048 0.026 0.048 0.145 0.145 0.048 0.073 0.045 0.048 0.097 0.097

CellSim+ 0.135 0.102 0.062 0.135 0.185 0.185 0.135 0.131 0.093 0.135 0.164 0.164
Pincette 0.154 0.113 0.069 0.155 0.191 0.191 0.154 0.142 0.101 0.154 0.187 0.187
%improve 13.82 11.09 10.91 14.62 2.90 2.90 14.22 8.56 9.16 13.74 13.91 13.91

TABLE V: F1-score@k, Precision@k, recall@k, and NDCG@k results of the combinations of three multi-view features in
Pincette on the Beijing collection (the best results are in bold and the second best are underlined).

Multi-view Features precision recall f1-score NDCG

Efficiency Periodicity Popularity @1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

© × × 0.226 0.330 0.225 0.195 0.553 0.635 0.210 0.413 0.332 0.269 0.428 0.522

× © × 0.224 0.336 0.230 0.195 0.555 0.615 0.208 0.419 0.334 0.264 0.433 0.526

× × © 0.205 0.304 0.206 0.188 0.529 0.606 0.196 0.386 0.307 0.196 0.386 0.307

© © × 0.246 0.347 0.254 0.211 0.568 0.658 0.227 0.431 0.367 0.294 0.453 0.564

× © © 0.235 0.330 0.225 0.204 0.550 0.645 0.219 0.423 0.334 0.277 0.433 0.526

© × © 0.240 0.327 0.242 0.210 0.559 0.649 0.224 0.423 0.353 0.224 0.413 0.353

© © © 0.251 0.350 0.257 0.211 0.574 0.663 0.229 0.435 0.370 0.309 0.456 0.573

in Table III) and a smaller number of POI candidates in a cell

on average (E[|Pc|] in Table III) than the latter.

D. Efficacy of Multi-view Features

We analyzed the efficacy of the three view features used in

Pincette through an ablation study on the Beijing collection,
which is larger among the two collections. Table V shows the

precision@k, recall@k, f1-score@k, and NDCG@k results of
the variants of Pincette, each of which is a possible combi-
nation of the three view features. Every individual feature is

shown to be effective. While putting all three view features

together is the most effective regardless of k, combining the
efficiency-view and periodicity-view features is the second

most effective, which indicates that those two views play an

important role in predicting POI visit patterns.

VII. CONCLUSION

In this paper, we presented the POI-level cellular trajectory
reconstruction problem that can significantly benefit digital
contact tracing for preventing the spread of infectious diseases.

A novel algorithm, Pincette, is proposed to incorporate the
efficiency, periodicity, and popularity aspects in a sophisticated

way to predict the visited POIs from a coarse-grained cellular

trajectory. Overall, we believe that Pincette will promote the
usability of cellular network data in digital contact tracing for

ever-emerging infectious diseases.
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