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Abstract
Although time-series classification has many applications in health-
care and manufacturing, the high cost of data collection and la-
beling hinders its widespread use. To reduce data collection and
labeling costs while maintaining high classification accuracy, we
propose a novel problem setting, called semi-supervised learning
with low-sampling-rate time series, in which the majority of time se-
ries are collected at a low sampling rate and are unlabeled whereas
the minority of time series are collected at a high sampling rate
and are labeled. For this novel problem scenario, we develop the
SemiTSR framework equipped with the super-resolution module
and the semi-supervised learning module. Here, low-sampling-rate
time series are upsampled precisely, taking periodicity and trend
at each timestamp into account, and both labeled and unlabeled
high-sampling-rate time series are utilized for training. In particular,
consistency regularization between artificially downsampled time
series derived from an original high-sampling-rate time series is ef-
fective at overcoming limited sampling rates. We demonstrate that
SemiTSR significantly outperforms conventional semi-supervised
learning techniques by assuring high classification accuracy with
low-sampling-rate time series.

CCS Concepts
•Mathematics of computing→Time series analysis; •Theory
of computation → Semi-supervised learning.
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Figure 1: Negative impact of reduced sampling rates on clas-
sification accuracy in three datasets [2, 10, 35].

1 Introduction
1.1 Background
The success of time-series classification requires a sufficient amount
of high-resolution data and high-quality labels [26]. However, these
requirements are not always easily met. Despite advancements
in sensor technology, the sampling rate for time series may not
be high enough due to limitations in storage space [21], transfer
speed [1], and battery capacity [17], particularly in mobile devices.
Moreover, due to the complicated temporal dynamics and high-
dimensional data structure of time series [30, 36, 59], data labeling
typically requires domain experts at a high cost.

Insufficient resolution of a time series, determined by its sampling
rate, naturally leads to a deterioration in classification accuracy. Fig-
ure 1 demonstrates, using the TCN and GRU+MLP methods [3, 13]
on the HAR, OPPOR, and ED datasets [2, 10, 35], that the classifica-
tion accuracy decreases rapidly as the sampling rate decreases—by
at least 20% when it is decreased to 1

16 . Thus, there is a trade-off be-
tween the cost of data collection and the accuracy of classification,
which cannot be attained concurrently.

The deterioration depicted in Figure 1 is primarily attributed to
(i) periodicity blur and (ii) phase shift. First, in Figure 2, consider
two time series whose frequency has been reduced to 1

8 of their
original frequency by downsampling. At the original frequency,
these two time series from the ‘Jogging’ and ‘Walking’ classes are
easily distinguishable; however, at the 1

8 frequency, the unique
periodicity in each class has been obscured by the downsampling.
Second, in Figure 3, consider two time series whose frequency has
been reduced to 1

16 of their original frequency. Due to the difference
in the phase of each data point in the two time series that have
been downsampled differently, where the phase indicates a position
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Figure 2: Example of periodicity blur while reducing the sam-
pling rate in the WISDM human activity dataset [57].
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Figure 3: Example of phase shift while reducing the sampling
rate in the WISDM human activity dataset [57].

within each period, the two time series appear very distinct despite
belonging to the same class ‘Upstairs.’

1.2 Main Contributions
To achieve high classification accuracy while keeping low data
collection cost, in this paper, we formulate a novel problem, called
semi-supervised learning with low-sampling-rate time series. In this
problem setting, a majority of time series are collected at a low
sampling rate and unlabeled, while a minority of time series are
collected at a high sampling rate and labeled. The overall cost of
data collection remains low because the proportion of the high-
sampling-rate time series is small (e.g., 10%), and labeling for this
small portion is considered feasible as confirmed in active learn-
ing [46]. In addition, both high and low sampling rates can coexist
because the sampling rate is adjustable in most data gathering en-
vironments [24, 29, 38]. Overall, the problem setting is practically
feasible and obviously satisfies low data collection cost.

The remaining challenge is to accomplish high classification ac-
curacy with limited availability of labeled high-sampling-rate time
series. To this end, we propose the framework, Semi-supervised
Time-series Super Resolution (SemiTSR), for addressing the novel
problem. The SemiTSR framework consists of (i) the super-resolution
module that upsamples low-sampling-rate time series into high-
sampling-rate time series and (ii) the semi-supervised learning mod-
ule that trains a classifier using both labeled and unlabeled high-
sampling-rate time series. These two modules—upsampler and
classifier—are trained in an end-to-end fashion.

The unique contributions for accomplishing high classification
accuracy are two fold, addressing the aforementioned two problems.
Handling of the Periodicity Blur: We integrate the inherent char-
acteristics of time series into the design of the upsampler. Without
loss of generality, we assume that a time series is the sum of trend,
periodicity, and random error [42]. When the upsampler estimates
missing values at unsampled timestamps, it takes account of other
sampled values that have a similar phase within a similar periodic-
ity as well as a similar trend, instead of simply using adjacent values.
Accordingly, we propose a context-aware attention technique based
on temporal embedding to focus on the other timestamps with
a similar context (i.e., periodicity and trend). As a result, unsam-
pled values are restored closer to their true values, which aids in
resolving the periodicity blur issue depicted in Figure 2.
Handling of the Phase Shift: We take full advantage of a small
amount of labeled high-sampling-rate time series in both the re-
constructor and classifier. Using the high sampling rates, the recon-
structor is trained to recover the original high-sampling-rate time

series from two phase-shifted, downsampled low-sampling-rate
time series. In addition, the classifier is trained to generate con-
sistent output for the two reconstructed high-sampling-rate time
series by shift consistency regularization, which is very effective to
relieve the phase shift issue depicted in Figure 3. Using the available
labels, the classifier is further trained to predict the correct label
for the two reconstructed high-sampling-rate time series.

In conclusion, to achieve both high classification accuracy and
low data collection cost, we newly introduce semi-supervised learn-
ing with low-sampling-rate time series and develop the SemiTSR
framework for the problem. In particular, SemiTSR effectively ad-
dresses periodicity blur and phase shift caused by limited sampling
rates in time series by employing the context-aware attention tech-
nique and the shift consistency regularization, respectively. Accord-
ing to our extensive experiments, when only 10% of the data is
labeled and the sampling rate is decreased to 1

8 of the labeled set,
SemiTSR significantly outperforms conventional semi-supervised
learning methods by 2.9–29.5%.
Potential Application Scenario: We would like to wrap up this
section with discussing an application scenario to emphasize the
usefulness of the framework. Most clinical electrocardiogram (ECG)
databases encompass time series data with sampling rates of 500–
1000Hz, following a practice endorsed by American Heart Associa-
tion [9, 45]. These databases are meticulously annotated by cardiol-
ogists, incurring significant costs. Conversely, widely-used wireless
ambulatory ECG devices produce unlabeled time series data at
sampling rates below 250Hz [22], which are insufficient to detect
long QT syndrome and hypocalcemia [5, 18], due to their power
constraint. These wireless ECG devices generate large amounts of
data in order to track the patients’ twenty-four-hour daily activities.
This discrepancy aligns perfectly with our novel problem. SemiTSR
leverages a substantial volume of unlabeled low-sampling-rate data
alongside a smaller volume of labeled high-sampling-rate data. This
approach enhances the contribution of the unlabeled, lower-quality
data to the diagnosis of sudden cardiac events outside of hospi-
tal settings. Please see Section 4.6 for the empirical results of this
application scenario.

2 Related Work
2.1 Semi-Supervised Learning
Semi-supervised learning (SSL) leverages large amounts of unlabeled
data to enhance deep learning when the labeled data is scarce. The
key SSL methods include consistency regularization, which man-
dates consistency in the model’s predictions across augmented in-
stances. This approach facilitates the model’s comprehension of the
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Figure 4: Limitation of upsampling convolution [47]. 𝑇 , 𝐹 , 𝑁
is the number of timestamps at a low sampling rate, the num-
ber of features, and the number of kernels for convolution
which is same as the upscaling factor.

unlabeled data distribution. In FixMatch [52], a strongly-augmented
instance is assigned to predict a weakly-augmented instance as a
pseudo-label. FreeMatch [56], an extension of FixMatch [52], con-
trols the confidence threshold for pseudo-labeling based on the
learning status in order to ensure the consistency with the correct
pseudo-label.

Another pivotal SSL strategy is the entropy minimization which
operates under the premise that the classification decision bound-
ary should evade regions populated densely by data points. The
techniques such as Pseudo-Label [32] and MixMatch [7] implic-
itly achieve entropy reduction by refining the sharpness of the
model’s predictions. Furthermore, ReMixMatch [8], building upon
MixMatch [7], endeavors to synchronize the marginal distribution
of unlabeled data predictions with the ground-truth labels, thus
enhancing model reliability and prediction accuracy.

Recently, a few semi-supervised learning techniques have
been introduced explicitly for time-series data [15, 19, 27, 55].
SemiTime [19] employs the pretext task, predicting whether two
segments have past and future relationships, to capture the neces-
sary temporal relations for classification. CrossMatch [48] proposes
context attachment as the time-series augmentation strategy in
consistency regularization, but does not address periodic features
of time series or the challenges presented by varying sampling
rates. SSGAN [40] utilizes labeled data to improve the imputation
of missing values in time series. The classifier is self-trained using
the pseudo-labels inferred from the imputed time series, while the
imputation module is supervised using the reconstruction and ad-
versarial losses. However, the goal of this work is mostly imputation,
and the classifier primarily serves for the purpose of imputation,
which does not suit our problem.

In summary, none of the existing SSL works consider the high
costs of time-series collection and labeling at the same time. Com-
pared with these methods, we reduce data collection and labeling
costs while leveraging high-sampling-rate time-series data to en-
sure classification accuracy.

2.2 Single-Image Super-Resolution
Single-image super-resolution models [12, 33, 34] aim to recon-
struct high-resolution images given low-resolution counterparts.
SwinIR [34] uses convolution and attentionmodules to capture long-
range dependencies within varying contents and simultaneously
remove border artifacts. Several recent methods utilize implicit
neural representation [12, 33, 39, 51] to represent a high-resolution
image as a combination of its low-resolution counterpart and a
neural network. For example, LIFF [12] employs an MLP to pre-
dict the RGB value of a target coordinate based on the nearest
low-resolution latent code. LTE [33] reconstructs high-frequency
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Reconstructor, ℳ𝒓𝒆𝒄𝒐𝒏
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Figure 5: Overview of the training SemiTSR framework
for labeled high-sampling-rate data and unlabeled low-
sampling-rate data. While testing, SemiTSR uses unlabeled
low-sampling-rate data as input.

components by mapping the target coordinate and the nearest
low-resolution latent code to locally dominant frequency terms.

However, none of these existing methods have been applied to
time-series data, where both temporal dependencies and periodic
features should be modeled [20, 59]. Particularly in the upscaling
stage, methods using implicit neural networks do not consider tem-
poral dependencies as they estimate high-resolution values based
on a single coordinate and its corresponding feature. A convolution-
based upscaling approach [47] also neglects the sequential relation
in the high resolution. As depicted in Figure 4, a low-sampling-
rate time series with three features is upsampled by a factor of 4.
The first four high-sampling-rate timestamps are generated using
different convolution kernels (blue, red, yellow, and green). How-
ever, since independent convolution kernels are used to reconstruct
the values of adjacent high-resolution coordinates, the sequential
relation is disconnected during the upsampling process.

3 Methodology
3.1 Problem Definition
We formally define the problem of learning a classification model
that operates on low-sampling-rate instances by leveraging high-
sampling-rate instances for training. Let (𝒙ℎ𝑖𝑔ℎ ∈ R𝑑×𝑇 , 𝑦) be a
labeled high-sampling-rate instance and 𝒖𝑙𝑜𝑤 ∈ R𝑑×𝛾𝑇 be an unla-
beled low-sampling-rate instance. 𝑑 , 𝑇 , and 𝛾 denote the number
of features, the number of timestamps within a time series col-
lected in the original sampling rate, and the low sampling rate,
respectively. The goal of this work is building a classification model
M(𝒖;Θ𝑟𝑒𝑐𝑜𝑛,Θ𝑐𝑙𝑠 ) that returns the probability of each class given
an unlabeled low-sampling-rate instance 𝒖 ∈ R𝑑×𝛾𝑇 . The model
M is parameterized by Θ𝑟𝑒𝑐𝑜𝑛 and Θ𝑐𝑙𝑠 referring to reconstruction
and classification modules.

3.2 The Overall Framework of SemiTSR
Figure 5 illustrates the overall procedure of SemiTSR framework,
which consists of the two neural network modules: reconstructor
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M𝑟𝑒𝑐𝑜𝑛 and classifier M𝑐𝑙𝑠 . To recover class-discriminative peri-
odic features, M𝑟𝑒𝑐𝑜𝑛 increases the resolution of a low-sampling-
rate time series to match the sampling rate of 𝒙ℎ𝑖𝑔ℎ . Subsequently,
the synthesized high-sampling-rate time series is fed into theM𝑐𝑙𝑠

to obtain the probability distribution for each class.
During training, the labeled high-sampling-rate data 𝒙ℎ𝑖𝑔ℎ pro-

vides supervision for bothM𝑟𝑒𝑐𝑜𝑛 andM𝑐𝑙𝑠 as shown in the left
flow of Figure 5. First, 𝒙ℎ𝑖𝑔ℎ is downsampled at the rate of 𝛾 to syn-
thesize two low-sampling-rate instances of different phases, 𝒙𝑙𝑜𝑤

and 𝒙̃𝑙𝑜𝑤 . Then, each 𝒙𝑙𝑜𝑤 and 𝒙̃𝑙𝑜𝑤 are processed by M𝑟𝑒𝑐𝑜𝑛

and M𝑐𝑙𝑠 sequentially. The supervised loss for the labeled high-
sampling-rate data consists of a classification loss L𝑐𝑙𝑠 and a re-
construction loss L𝑟𝑒𝑐𝑜𝑛 = 𝜆𝑡𝑖𝑚𝑒L𝑡𝑖𝑚𝑒 + 𝜆𝑓 𝑟𝑒𝑞L𝑓 𝑟𝑒𝑞 which are
formulated by

L𝑐𝑙𝑠 (𝒙ℎ𝑖𝑔ℎ, 𝑦) =
1
2

∑︁
𝒙∈𝑋

𝐻 [𝑦,M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒙))]

+ 𝐻 [𝑦,M𝑐𝑙𝑠 (𝑦 |𝒙ℎ𝑖𝑔ℎ)],

L𝑡𝑖𝑚𝑒 (𝒙ℎ𝑖𝑔ℎ) =
1
2

∑︁
𝒙∈𝑋

∥𝒙ℎ𝑖𝑔ℎ −M𝑟𝑒𝑐𝑜𝑛 (𝒙)∥22

L𝑓 𝑟𝑒𝑞 (𝒙ℎ𝑖𝑔ℎ) =
1
2

∑︁
𝒙∈𝑋

∥F (𝒙ℎ𝑖𝑔ℎ) − F (M𝑟𝑒𝑐𝑜𝑛 (𝒙))∥1,

(1)

where 𝑋 is a set of downsampled instances {𝒙𝑙𝑜𝑤 , 𝒙̃𝑙𝑜𝑤} and
𝐻 [𝑝, 𝑞] is the cross-entropy between two probability distributions
𝑝 and 𝑞, while F denotes the fast Fourier transform. The classi-
fication loss L𝑐𝑙𝑠 supervises M𝑟𝑒𝑐𝑜𝑛 and M𝑐𝑙𝑠 , using a limited
quantity of labeled data. Recent studies in the filed of time-series
analysis [20, 59] have emphasized the significance of modeling both
temporal and frequency domains for accurate time-series forecast-
ing and classification tasks. Hence, the reconstruction errors on
both the original time series and Fourier transformed time series,
L𝑡𝑖𝑚𝑒 and L𝑓 𝑟𝑒𝑞 , are minimized to improve the classification by
recovering temporal dependency as well as periodic features.

Now, to resolve the phase shift, we use a consistency regulariza-
tion between the instances of different phases. The regularization
enforces similarity between the classification result of 𝒙𝑙𝑜𝑤 and
𝒙̃𝑙𝑜𝑤 , which have different phases derived from a labeled high-
sampling-rate instance 𝒙ℎ𝑖𝑔ℎ , by minimizing the mean squared er-
ror. The consistency regularization term for labeled high-sampling-
rate data, denoted as L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 in the top left of Figure 5, serves
the consistency purpose. Since 𝒙𝑙𝑜𝑤 and 𝒙̃𝑙𝑜𝑤 are supervised using
ground-truth labels viaL𝑐𝑙𝑠 , minimizing the cross-entropy between
the results of the shifted instances can be redundant. Therefore, we
minimize the mean squared error as a loss term to facilitate a more
fine-grained consistency [31].

For consistency regularization of the unlabeled low-sampling-
rate instance 𝒖𝑙𝑜𝑤 , a synthesized counterpart 𝒖̃𝑙𝑜𝑤 is generated,
which exhibits a different phase compared to 𝒖𝑙𝑜𝑤 . This synthesis is
achieved by downsampling from M𝑟𝑒𝑐𝑜𝑛 (𝒖𝑙𝑜𝑤), since the ground-
truth shifted instance is not available. Then, the classification result
of 𝒖𝑙𝑜𝑤 serves as a pseudo-label for 𝒖̃𝑙𝑜𝑤 if the prediction for 𝒖𝑙𝑜𝑤
is confident. Self-training limited to confident instances prevents
M𝑐𝑙𝑠 learning frommis-classified uncertain instances [52]. The loss
flow for the unlabeled low-sampling-rate data is shown in the right

Algorithm 1 SemiTSR

Input: Labeled batch D𝐿 , unlabeled batch D𝑈 , confidence thresh-
old 𝜏 , labeled batch size 𝐵, unlabeled batch size ratio 𝜇, loss
weights (𝜆𝑡𝑖𝑚𝑒 , 𝜆𝑓 𝑟𝑒𝑞, 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 ), the number of original times-
tamps 𝑇 , low-sampling-rate 𝛾

1: L𝑐𝑙𝑠 ,L𝑟𝑒𝑐𝑜𝑛,L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 ,L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 = 0, 0, 0, 0
2: /* Labeled data flow */
3: for 𝒙ℎ𝑖𝑔ℎ in D𝐿 do
4: 𝒙𝑙𝑜𝑤 = 𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 (𝒙ℎ𝑖𝑔ℎ ;𝛾)
5: 𝒙̃𝑙𝑜𝑤 = 𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 (𝒙ℎ𝑖𝑔ℎ

𝑏
;𝛾)

6: L𝑐𝑙𝑠 += 1
2 (𝐻 [𝑦,M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒙𝑙𝑜𝑤))]

+𝐻 [𝑦,M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒙̃𝑙𝑜𝑤))])
7: L𝑟𝑒𝑐𝑜𝑛 += 𝜆𝑡𝑖𝑚𝑒L𝑡𝑖𝑚𝑒 + 𝜆𝑓 𝑟𝑒𝑞L𝑓 𝑟𝑒𝑞 /* Eq. (1) */
8: L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 += ∥M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒙𝑙𝑜𝑤))

−M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒙̃𝑙𝑜𝑤))∥22
9: end for
10: /* Unlabeled data flow */
11: for 𝒖𝑙𝑜𝑤 in D𝑈 do
12: 𝒖ℎ𝑖𝑔ℎ = M𝑟𝑒𝑐𝑜𝑛 (𝒖𝑙𝑜𝑤)

13: 𝒖̃𝑙𝑜𝑤 = 𝛾
∑ 1

𝛾

1 𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 (𝒖
ℎ𝑖𝑔ℎ ;𝛾)

14: 𝑞 = M𝑐𝑙𝑠 (𝑦 |𝒖ℎ𝑖𝑔ℎ)
15: L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 += 1(𝑚𝑎𝑥 (𝑞) ≥ 𝜏)

·𝐻 [𝑎𝑟𝑔𝑚𝑎𝑥𝑦 (𝑞),M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒖̃𝑙𝑜𝑤))]
16: end for
17: return L𝑐𝑙𝑠

𝐵
+ L𝑟𝑒𝑐𝑜𝑛

𝐵
+ 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 (

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙
𝐵

+ L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢
𝜇𝐵

)

flow of Figure 5. Overall, the consistency loss is formulated by

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 (𝑥𝑙𝑜𝑤 , 𝑥𝑙𝑜𝑤) = ∥M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝑥𝑙𝑜𝑤))

−M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝑥𝑙𝑜𝑤))∥22,

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 (𝑢𝑙𝑜𝑤 , 𝑢𝑙𝑜𝑤) = 1(𝑚𝑎𝑥 (𝑞) ≥ 𝜏)

· 𝐻 [𝑞,M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝑢𝑙𝑜𝑤))],

(2)

where 𝑞 is M𝑐𝑙𝑠 (𝑦 |M𝑟𝑒𝑐𝑜𝑛 (𝒖𝑙𝑜𝑤)), 𝑞 is 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑞), and 𝜏 is the
confidence threshold for making a pseudo-label.

The final loss is defined as L = L𝑐𝑙𝑠 + L𝑟𝑒𝑐𝑜𝑛 +
𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 (L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 + L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 ). Here, 𝜆𝑡𝑖𝑚𝑒 , 𝜆𝑓 𝑟𝑒𝑞 , and 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡
are scalar hyperparameters that determine the relative weights of
L𝑡𝑖𝑚𝑒 ,L𝑓 𝑟𝑒𝑞 , andL𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙+L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 , respectively. The pseudo-
code implementation of the proposed SemiTSR framework is pro-
vided in Algorithm 1.

3.3 Reconstructor
As we have emphasized in Introduction, the restoration of class-
discriminative local periodicity is crucial for enhancing the clas-
sification of low-sampling-rate time series. For this purpose, an
upsampler within the resconstructor M𝑟𝑒𝑐𝑜𝑛 plays a vital role
in restoring the periodicity that has been smoothed out. The re-
constructor mainly consists of two components: an encoder and
a temporal upsampler. Inspired by image super-resolution tech-
niques [12, 33, 34], the low-sampling-rate time series {𝒙𝑡 ; 𝑡 ∈
(𝑝, 𝑝 + 1

𝛾 , . . . , 𝑝 + 𝛾𝑇−1
𝛾 ), 𝑝 ∈ (1, 2, . . . , 1𝛾 )} is first encoded by a
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Figure 6: Overall architecture of high-sampling-rate recon-
structor M𝑟𝑒𝑐𝑜𝑛 consisting of a deep feature encoder and a
temporal upsampler.

deep feature encoder. Then, the latent feature map at a low sam-
pling rate, {𝒛𝑡 ; 𝑡 ∈ (𝑝, 𝑝 + 1

𝛾 , . . . , 𝑝 + 𝛾𝑇−1
𝛾 ), 𝑝 ∈ (1, 2, . . . , 1𝛾 )}, is

upsampled at the end of the reconstruction as shown in Figure 6.

3.3.1 Encoder. We modify Residual Swin Transformer
Block (RSTB) [34] to create a deep feature encoder capable
of processing 1-D input. As shown in the left part of Figure 6, the
deep feature encoder consists of 𝑀 RSTBs and a convolution layer.
Each RSTB consists of stacked attention modules, repeated 𝑁

times, and culminates with a convolution layer that includes a skip
connection. Both a long skip connection and attention modules
enable modeling the long-range dependency within the input time
series. While we compose an encoder with RSTB, which is used
in state-of-the-art image super-resolution methods, an arbitrary
time-series encoder can be used as an encoder.

3.3.2 Temporal Upsampler. Meanwhile, for an upsampler that in-
creases the temporal resolution in effect from the low-sampling-
rate of 𝒖𝑙𝑜𝑤 to the high-sampling-rate of 𝒙ℎ𝑖𝑔ℎ , it is impor-
tant to accurately restore local periodic patterns that have been
smoothed out. However, techniques widely employed in image
super-resolution [12, 47] are inappropriate for time series due to
their inability to effectively model temporal dependencies and peri-
odic features. For example, as depicted in in Figure 7(a), sub-pixel
convolution applies a fixed kernel of size three to the adjacent
observed points, without considering the periodicity and relative
phase of the target timestamp. Consequently, the reconstructed
value significantly deviates from the ground-truth peak point. That
is, upsampling with the observed timestamps should consider the
relative phase and periodicity of the target timestamp. To this end,
we propose a novel periodic time embedding-based attention.

3.3.3 Context-Aware Periodic Time Embedding. To achieve accurate
upsampling, the model should learn the periodicity and relative
phase associated with each timestamp. For this purpose, we propose
a time embedding which captures the local periodicity and trend
within a given local context corresponding to each timestamp. Let us
denote the output of the encoder on a low-sampling-rate time series

Original time series Low Target timestamp ★Reconstructed Weight

(a) Sub-pixel Convolution. (b) Temporal Upsampler.

Figure 7: Visualization of the two upsampling methods. The
gray line is the original time series at a high sampling rate,
and the black points are the observed time series at a low
sampling rate. Red stars are the reconstructed values given
black observed points.

as {𝒛𝑡 ∈ R𝑑𝑧 : 𝑡 ∈ (𝑝, 𝑝 + 1
𝛾 , . . . , 𝑝 + 𝛾𝑇−1

𝛾 ), 𝑝 ∈ (1, 2, . . . , 1𝛾 )}. By
applying linear interpolation to 𝒛𝑡 , we generate a latent feature map
with a high sampling rate denoted as {𝒛∗𝑡 ∈ R𝑑𝑧 : 𝑡 ∈ (1, 2, . . . ,𝑇 )}.
Using the interpolated latent feature map, the time embedding
𝑓 (𝑡, 𝒛∗𝑡 ) ∈ R𝑑𝑡 at time 𝑡 occurring with the high sampling rate is
formulated by

𝑓 (𝑡, 𝒛∗𝑡 ) =


𝑊0𝑡 + 𝑏0

𝑠𝑖𝑛(𝐹1 (𝒛∗𝑡 )𝑡 + 𝑃1 (𝒛∗𝑡 ))
.
.
.

𝑠𝑖𝑛(𝐹𝑑𝑡−1 (𝒛∗𝑡 )𝑡 + 𝑃𝑑𝑡−1 (𝒛∗𝑡 ))


, (3)

where𝑊0 and 𝑏0 are learnable parameters, and 𝐹𝑖 and 𝑃𝑖 are the
MLPs that estimate frequency and phase, respectively, for a dimen-
sion 𝑖 ∈ (1, 2, . . . , 𝑑𝑡 − 1). In Equation (3), a local trend and the
periodicities flowing at time 𝑡 are embedded in each dimension of
the time embedding.

3.3.4 Time Embedding-Based Attention. Based on the time embed-
ding, which represents the local periodicity and trend associated
with each timestamp, a comparative analysis of the relative phase
and period of these timestamps becomes feasible. By employing the
time embedding as the query and key and an interpolated latent
feature as the value, an attention module [54] can effectively learn
the most relevant timestamps and assign appropriate weights to
their corresponding values. Specifically, for a given query times-
tamp 𝑡𝑞𝑢𝑒𝑟𝑦 , the attention score for each key timestamp is com-
puted by evaluating the similarity between 𝑓 (𝑡𝑞𝑢𝑒𝑟𝑦, 𝒛∗𝑡𝑞𝑢𝑒𝑟𝑦 ) and
{𝑓 (𝑡𝑘𝑒𝑦, 𝒛∗𝑡𝑘𝑒𝑦 ) : 𝑡𝑘𝑒𝑦 ∈ (1, . . . , 𝑡𝑞𝑢𝑒𝑟𝑦, . . . ,𝑇 )} as follows:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂
whereℎ𝑒𝑎𝑑𝑖 = Attention(f (t, 𝒛∗t )WQ, f (t, 𝒛∗t )WK, 𝒛

∗
tWV)

and Attention(𝑄,𝐾,𝑉 ) = Softmax(𝑄𝐾
⊤

√
𝑑𝑡

)𝑉 .
(4)

Here,𝑊𝑄 ,𝑊𝐾 ∈ R𝑑𝑡×
𝑑𝑡
ℎ and𝑊𝑉 ∈ R𝑑𝑧×

𝑑𝑧
ℎ are learnable parame-

ters, and ℎ is the number of heads. Finally, the attention result is
combined with a shortcut connection and subsequently subjected to
convolutions with dilation sizes of 1, 1

2𝛾 , and
3
2𝛾 . This formulation

ensures that the receptive fields cover values beyond the sampling
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(a) Quinx (female). (b) Stigma (male).

Figure 8: Insect Sound dataset [11] visualization of different
species and sex.

Table 1: Benchmark dataset statistics.

Datasets Applications Window size # Class # Train # Test # Feature

Opportunity Human Activity 64 17 5907 1604 77
InsectSound Audio 600 10 10000 5000 1
mHealth Human Activity 200 12 2281 948 23
SAMSUNG Server Monitoring 120 12 6000 3000 4

rate. As the high-sampling-rate time series prediction, the average
of the three convolution outputs is used.

Through the mapping of a latent feature to the frequency and
phase components associated with the corresponding timestamp,
the time embedding 𝑓 (𝑡, 𝒛∗𝑡 ) captures the local periodicity, allowing
it to effectively model time-varying periodic patterns. Figure 8 vi-
sualizes how the frequency and amplitude change over time within
a given time series. Simultaneously, the first dimension of 𝑓 (𝑡, 𝒛∗𝑡 )
represents the trend component of the time series by means of
learned linear transformation. The time embedding-based attention
then assigns appropriate weights to the values of contextually and
periodically relevant timestamps, as depicted in Figure 7(b).

4 Experiments
4.1 Experiment Setting
Datasets: Table 1 provides a summary of four benchmark datasets
used in the experiment: Opportunity, InsectSound, mHealth, and
SAMSUNG. For more detail of each dataset, see Appendix A. We
also conducted experiment on ten datasets from the UCR time-series
classification archive1. The ten datasets were chosen based on three
specific criteria: a large amount of data, with at least 1000 instances
in the training and test sets; a long original window length, of at
least 96; and a high level of classification difficulty, with at least
seven classes.

Instances from the original dataset were used as high-sampling-
rate time series. Low-sampling-rate instances are downsampled
from the original time series at a fixed sampling rate of 𝛾 . In our
experiment, 𝛾 varies from 1

2 to 1
16 .

Evaluation Metrics: We report the evaluation based on accuracy,
which is defined by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = # 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

× 100. (5)

We repeated each evaluation five times using random seeds and
distinct validation sets, and then report the mean and standard
deviation for each result.
Baselines: We compare our method with the state-of-the-art semi-
supervised learning methods based on consistency regularization:
1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

FixMatch [52], FreeMatch [56], and ReMixMatch [8]. For the aug-
mentation strategy used in each method, see Appendix B.

For the classifier backboneM𝑐𝑙𝑠 of the semi-supervised learning,
we used TCN [3] and Transformer [54] for their popularity in time-
series classification [25, 58].M𝑐𝑙𝑠 trained with 100% labeled high-
sampling-rate data is the performance upper bound, while M𝑐𝑙𝑠

trained with 𝑙% labeled low-sampling-rate data is the performance
lower bound. Our evaluation is conducted on 𝑙 = 20 and 𝑙 = 10 and,
we randomly sampled 𝑙% from the fully-labeled original dataset to
make unlabeled data.
Model Configurations: A deep feature encoder in SemiTSR con-
sists of four RSTBs2, and each RSTB consists of four attention layers
with four heads. For the time embedding-based attention, 𝐹𝑖 (·) and
𝑃𝑖 (·) are three layer MLPs with 256 hidden dimensions. (𝜆𝑡𝑖𝑚𝑒 ,
𝜆𝑓 𝑟𝑒𝑞, 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡 ) is (2, 0.1, 1) for Opportunity and (1, 2, 1) for the oth-
ers since Opportunity exhibits a weak periodicity. 𝑑𝑧 is 256, and 𝑑𝑡
is set to 64 for mHealth and 32 for the others.

For the classifier backbone M𝑐𝑙𝑠 , TCN is composed of eight
temporal blocks whose hidden dimensionality is 128 and kernel
size is seven. Transformer is composed of two transformer layers
with two heads followed by a linear layer.
Implementations Details: The batch size of the labeled data is 32,
and the number of epochs is 400, except for the InsectSound dataset
where we set 16 and 150 due to its data size. The unlabeled batch
size ratio is 3. Train and validation data are split by 9:1.

For semi-supervised learning baselines, we use SGD with a mo-
mentum of 0.9 for the optimizer following [52]. The learning rate
is initialized as 0.03 and decayed using a cosine scheduler [37] to
𝜂𝑐𝑜𝑠 ( 7𝜋𝑘16𝐾 ), where 𝜂 is the initial learning rate, 𝑘 is the current train-
ing step, and 𝐾 is the total number of training steps. All the other
hyperparameters are set to default values in each paper. According
to [52], semi-supervised learning performance heavily depends on
an optimizer, a regularization, and a training scheduler as well as
a semi-supervised learning algorithm. We found that Adam [28]
works better than SGD [53] in SemiTSR; the learning rate is initial-
ized to 0.001 and decayed by 0.5 every 50 epochs.

We conducted our experiment using Pytorch 1.12.1 on an
NVIDIA RTX 3090Ti-equipped server. The source code is avail-
able at https://github.com/kaist-dmlab/SemiTSR.

4.2 Overall Performances
Tables 2 and 3 compare the classification accuracy of SemiTSR
and semi-supervsied learning baselines as well as fully supervised
learning whenM𝑐𝑙𝑠 is TCN. SemiTSR performs best in almost all
combinations of the low-sampling-rates and the labeled data ratios.
Specifically in the lowest sampling rate when the labeled ratio is
10%, SemiTSR outperforms the other semi-supervised methods by
4.00–22.74% average performance margin. This result confirms that
recovering high-frequency terms is crucial for improving the low-
sampling-rate time-series classification. It is noteworthy that our
method mostly caught up 100% fully supervised learning of each
sampling rate. Existing semi-supervised learning baselines occa-
sionally beat SemiTSR in a relatively high low-sampling-rate (e.g.,
1/2). In these cases, we conjecture that the low-sampling-rate data

2https://github.com/JingyunLiang/SwinIR
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Table 2: Accuracy comparison of semi-supervised learning methods with 20% labeled data when the classifier backbone is TCN.

Method Opportunity InsectSound mHealth SAMSUNG
1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/2 1/4 1/8 1/2 1/4 1/8

Fully-Supervised(100%) 67.24 66.66 64.83 63.37 70.26 64.74 51.01 93.08 92.51 90.57 92.86 91.38 89.81
(±1.93) (±1.59) (±2.20) (±1.77) (±0.39) (±0.66) (±1.14) (±3.54) (±3.67) (±2.73) (±0.43) (±0.20) (±0.44)

Fully-Supervised(20%) 63.90 57.72 57.36 53.37 60.48 54.20 39.58 92.57 91.12 86.43 88.05 85.39 84.03
(±1.99) (±1.94) (±0.88) (±1.40) (±0.81) (±1.11) (±0.59) (±3.03) (±2.92) (±1.67) (±0.50) (±0.86) (±0.75)

FixMatch 69.43 67.42 66.20 65.07 65.83 59.51 42.81 86.79 84.14 85.91 91.65 89.88 88.85
(±2.86) (±2.02) (±2.29) (±1.79) (±1.00) (±0.56) (±0.60) (±3.93) (±5.67) (±3.67) (±0.67) ) ± 0.70) (±0.57)

FreeMatch 66.28 65.11 65.51 64.04 66.15 60.39 43.37 88.75 91.50 88.59 92.44 89.90 88.95
(±1.52) (±2.16) (±1.56) (±0.77) (±0.93) (±0.83) (±0.28) (±3.47) (±3.68) (±3.27) (±0.14) (±0.32) (±0.45)

ReMixMatch 69.40 66.72 65.12 64.93 67.54 59.46 43.11 94.05 91.65 90.08 87.20 86.57 86.83
(±1.31) (±1.98) (±0.40) (±1.07) (±0.91) (±0.63) (±0.87) (±1.89) (±4.35) (±2.70) (±1.06) (±0.85) (±0.71)

SemiTSR
71.59 69.85 71.15 66.69 65.32 62.43 50.99 93.76 94.77 93.10 93.20 92.50 91.64
(±2.09) (±.39) (±1.88) (±2.44) (±0.98) (±0.77) (±0.61) (±1.18) (±2.45) (±1.81) (±0.54) (±0.57) (±0.89)

Table 3: Accuracy comparison of semi-supervised learning methods with 10% labeled data when the classifier backbone is TCN.

Method Opportunity InsectSound mHealth SAMSUNG
1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/2 1/4 1/8 1/2 1/4 1/8

Fully-Supervised(100%) 67.24 66.66 64.83 63.37 70.26 64.74 51.01 93.08 92.51 90.57 92.86 91.38 89.81
(±1.93) (±1.59) (±2.20) (±1.77) (±0.39) (±0.66) (±1.14) (±3.54) (±3.67) (±2.73) (±0.43) (±0.20) (±0.44)

Fully-Supervised(10%) 56.66 54.15 53.98 49.35 55.18 48.79 34.16 86.92 83.78 77.07 85.06 83.77 81.23
(±1.98) (±1.02) (±1.41) (±2.63) (±0.83) (±1.96) (±0.39) (±2.33) (±2.90) (±4.00) (±0.66) (±0.99) (±0.67)

FixMatch 64.89 64.20 62.42 61.22 61.24 55.76 37.38 89.64 83.82 83.14 88.50 87.98 86.71
(±1.75) (±3.32) (±0.87) (±1.25) (±1.14) (±1.05) (±0.82) (±2.68) (±2.70) (±2.77) (±0.66) (±0.63) (±0.36)

FreeMatch 64.66 61.25 63.23 58.73 64.10 56.78 41.22 87.34 87.89 83.25 89.45 88.79 86.81
(±1.62) (±2.84) (±1.59) (±2.09) (±1.14) (±0.96) (±1.31) (±6.67) (±5.45) (±3.85) (±0.58) (±0.72) (±0.80)

ReMixMatch 66.52 63.75 61.66 61.22 63.95 53.42 36.30 90.49 87.91 82.91 85.99 84.24 84.27
(±1.86) (±1.80) (±1.70) (±1.74) (±1.45) (±1.85) (±1.01) (±4.20) (±5.63) (±3.66) (±0.96) (±1.06) (±0.42)

SemiTSR
67.39 66.25 65.33 64.59 61.34 58.04 47.01 90.41 90.34 89.42 90.21 90.40 89.69
(±1.21) (±2.95) (±3.43) (±0.97) (±1.65) (±0.78) (±0.36) (±3.12) (±1.93) (±4.04) (±0.75) (±0.74) (±0.74)

already contains enough information, eliminating the necessity for
reconstruction into a high sampling rate.

The results for the UCR datasets are shown in Table 4. For all
datasets, SemiTSR outperforms the semi-supervised learning base-
lines. In particular, the Mallat and NonInvasiveFetalECGThorax1
datasets, which were down-sampled at much lower rates than the
other datasets, exhibited substantial performance enhancements. In
the absence of a sophisticated upsampling method like SemiTSR, it
would be difficult to recover the ground-truth time series in harsh
down-sampling environments.

4.3 Effectiveness of Temporal Upsampler
4.3.1 Quantitative Analysis. To show the effectiveness of the tem-
poral upsampler, we compare the classification performance with
the existing upsampling methods: sub-pixel convolution [47] and
LTE3[33]. Model configurations except the upsampler are all iden-
tically set. According to Table 5, the temporal upsampler performs
better than the other upsampling methods in most combinations.
Wide performance gap at the lowest sampling rate implies that our
method learns temporal patterns better than the other upsamplers
even if a small amount of information is available. In cases where
data exhibits clear periodicity (e.g., mHealth), we observe that LTE
3https://github.com/jaewon-lee-b/lte

outperforms sub-pixel convolution. We hypothesize that it is be-
cause LTE aims to restore the local periodicity accurately. Further
analysis on the reconstruction quality including MSE comparison
is presented in Appendix D.

4.3.2 Qualitative Analysis. As shown in Figures 9 and 10, the tem-
poral upsampler reconstructs high-sampling-rate time series better
than the other upsamplers in effect. In Figure 9, the first column
demonstrates that the local periodicity is precisely estimated by
the temporal upsampler, whereas the periodicity reconstructed by
sub-pixel convolution is shifted in time relative to the ground-truth
periodicity. LTE neither precisely estimates frequency nor ampli-
tude. The second column shows that our method better estimates
the amplitude of the changing periodicity. For Figure 10, the tem-
poral upsampler restores the meaningful periodicity, whereas the
others generate false noisy peaks. Especially in the second column,
sub-pixel convolution generates false periodicities and LTE gener-
ates overly smoothed time series, whereas the temporal upsampler
effectively recovers the periodicity.

4.4 Ablation Study
In order to demonstrate the contribution of each loss term in
SemiTSR, we train the model without a specific loss term. That
is, each weight parameter 𝜆𝑡𝑖𝑚𝑒 , 𝜆𝑓 𝑟𝑒𝑞 , 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 , and 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙
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Table 4: Accuracy comparison of semi-supervised learning methods on ten UCR time-series classification datasets.

Data Label Ratio Sampling Rate Fully-Sup (Label Ratio%) Fully-Sup (100%) FixMatch FreeMatch ReMixMatch SemiTSR

ElectricDevices
10 1/2 55.01 (±0.83) 64.67 (±0.60) 58.93 (±1.04) 57.56 (±1.13) 58.31 (±1.02) 60.17 (±1.02)
10 1/4 52.89 (±1.86) 59.53 (±1.05) 54.41 (±1.74) 53.36 (±0.98) 55.52 (±0.64) 55.95 (±1.34)
10 1/8 49.17 (±1.15) 57.67 (±0.87) 51.41 (±1.92) 51.88 (±1.64) 52.32 (±0.89) 53.29 (±1.42)

SwedishLeaf 20 1/8 59.26 (±0.91) 76.74 (±1.11) 66.96 (±1.27) 61.93 (±1.51) 52.74 (±3.02) 76.15 (±2.19)
FacesUCR 10 1/8 61.67 (±2.01) 86.67 (±3.70) 66.50 (±5.35) 65.17 (±3.68) 69.33 (±1.03) 73.33 (±1.25)
FaceAll 10 1/8 50.96 (±2.63) 81.38 (±1.22) 56.30 (±1.26) 55.85 (±1.15) 56.89 (±2.10) 65.90 (±0.72)
Mallat 10 1/32 91.48 (±0.85) 96.02 (±0.56) 92.82 (±0.68) 94.54 (±0.36) 86.06 (±2.52) 95.37 (±0.42)
NonInvasiveFetalECGThorax1 10 1/25 40.56 (±2.26) 79.25 (±0.44) 39.68 (±2.37) 42.95 (±1.10) 33.76 (±0.27) 58.59 (±3.17)
MedicalImages 10 1/8 49.43 (±2.37) 63.69 (±1.82) 55.03 (±1.61) 54.16 (±0.25) 53.63 (±0.62) 55.29 (±1.60)
ShapesAll 10 1/16 30.78 (±5.85) 73.78 (±0.91) 30.00 (±4.77) 28.28 (±4.11) 32.17 (±2.23) 33.64 (±2.37)
UWaveGestureLibraryAll 10 1/8 83.34 (±1.65) 96.27 (±0.23) 84.71 (±1.82) 84.12 (±1.26) 61.60 (±10.08) 87.98 (±0.47)
Phoneme 10 1/8 12.62 (±1.01) 23.21 (±0.88) 13.55 (±2.38) 12.15 (±0.38) 13.24 (±0.79) 16.28 (±1.67)

Table 5: Accuracy comparison of our temporal upsampler and the others based on the same deep feature encoder.

Labeled Ratio Upsmapler Opportunity InsectSound mHealth SAMSUNG
1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/2 1/4 1/8 1/2 1/4 1/8

20%

Sub-Pixel Conv 71.54 71.98 70.22 65.12 65.54 62.40 50.29 93.49 92.87 90.65 93.07 92.41 91.72
(±1.46) (±1.52) (±2.58) (±1.50) (±0.54) (±1.67) (±0.77) (±0.97) (±1.16) (±2.60) (±0.23) (±0.84) (±0.60)

LTE 67.15 68.58 67.23 63.40 64.89 61.33 48.31 92.82 94.41 92.63 92.84 91.85 90.84
(±2.31) (±1.22) (±1.95) (±1.28) (±1.17) (±0.84) (±0.49) (±2.82) (±3.62) (±1.54) (±0.18) (±0.19) (±0.47)

SemiTSR
71.59 69.85 71.15 66.69 65.32 62.43 50.99 93.76 94.77 93.10 93.20 92.50 91.64
(±2.09) (±2.39) (±1.88) (±2.44) (±0.98) (±0.77) (±0.61) (±1.18) (±2.4) (±1.81) (±0.54) (±0.57) (±0.89)

10%

Sub-Pixel Conv 66.92 66.22 65.22 62.86 58.88 55.82 45.72 87.05 89.27 86.22 89.53 89.48 89.49
(±2.88) (±2.20) (±2.49) (±1.71) (±1.76) (±1.07) (±1.15) (±3.10) (±2.02) (±2.03) (±0.80) (±0.69) (±0.72)

LTE 60.05 63.29 62.68 59.80 60.29 56.01 44.46 90.36 89.30 88.11 90.16 89.53 89.13
(±2.64) (±1.86) (±2.32) (±1.48) (±0.37) (±0.49) (±0.99) (±3.88) (±2.18) (±3.56) (±0.64) (±0.65) (±0.44)

SemiTSR
67.39 66.25 65.33 64.59 61.34 58.04 47.01 90.41 90.34 89.42 90.21 90.40 89.69
(±1.21) (±2.95) (±3.43) (±0.97) (±1.65) (±0.78) (±0.36) (±3.12) (±1.93) (±4.04) (±0.75) (±0.74) (±0.74)

Reconstruction Ground Truth
Sub-Pixel Convolution

LTE

Temporal Upsampler

Figure 9: Visualization of InsectSound reconstruction using
different upsampling methods. 𝛾 is 1

8 and 𝑙 is 20% . The two
columns are different instances.

Reconstruction Ground Truth
Sub-Pixel Convolution

LTE

Temporal Upsampler

Figure 10: V isualization of mHealth reconstruction using
different upsampling methods. 𝛾 is 1

8 and 𝑙 is 10% . The two
columns are different instances.

was set to zero in (i)–(iv) respectively. Table 6 shows the result.
Performance gain by shift consistency regularization verifies that
learning various phases from the distribution of unlabeled data
improves generalization. Depending on the dataset, the effect of

reconstruction loss on Fourier-transformed time series varies. It
will be the future work to adaptively adjust the weight on frequency
domain reconstruction considering the periodicity of the data. To
further demonstrate the contribution of an attention layer, we con-
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Table 6: Ablation study on each loss term where 10% of the
data is labeled and the low sampling rate is 1

8 except for
Opportunity ( 1

16 ).

Opportunity InsectSound mHealth SAMSUNG

(i) w/o L𝑡𝑖𝑚𝑒 59.65 (±1.35) 45.00 (±1.83) 88.21 (±4.84) 83.60 (±4.38)
(ii) w/o L𝑓 𝑟𝑒𝑞 60.49 (±2.25) 42.68 (±1.08) 89.72 (±3.22) 89.07 (±0.60)

(iii) w/o L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑢 57.54 (±0.50) 46.39 (±0.78) 88.99 (±2.95) 89.23 (±0.95)
(iv) w/o L𝑐𝑜𝑛𝑠𝑖𝑠𝑡_𝑙 62.22 (±3.92) 40.15 (±0.96) 87.58 (±3.27) 88.09 (±0.41)
(v) w/o 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 61.82 (±2.03) 46.63 (±0.60) 87.09 (±3.61) 89.22 (±0.49)

SemiTSR 64.59 (±0.97) 47.01 (±0.36) 89.42 (±4.04) 89.37 (±0.78)

Table 7: Classification accuracy compared to imputation
methods when 𝑙 is 10% and 𝛾 is 1

8 except for Opportunity ( 1
16 ).

Opportunity InsectSound mHealth SAMSUNG

mTAND 58.70 (±3.03) 25.26 (±0.91) 89.24 (±3.32) 86.95 (±1.22)
HetVAE 62.73 (±1.63) 10.18 (±0.48) 66.56 (±2.39) 83.34 (±0.51)
SemiTSR 64.59 (±0.97) 47.01 (±0.36) 89.42 (±4.04) 89.37 (±0.78)

duct an ablation study where interpolated latent features directly
go through the convolution layer. As shown in (v) of Table 6, at-
tention mechanism based on the time embedding improves the
classification accuracy in all datasets.

4.5 Comparison with Imputation Methods
To further show the effectiveness of SemiTSR, we compare it with
existing imputation methods [49, 50] followed by a classifier. To
be specific, an imputation model is pre-trained using both the low-
sampling-rate and high-sampling-rate data, while the classification
loss on the labeled high-sampling-rate data supervises the classi-
fier and the imputation model. Then, the pre-trained imputation
model replaces SemiTSR’s reconstructor for semi-supervised learn-
ing. For mTAND4[50], we follow their setting which uses the en-
coder output as the classifier input. For HetVAE5[49], we use the
imputed data at a high sampling rate as the classifier input. Table 7
shows that SemiTSR with our reconstructor performs better than
the imputation-based semi-supervised learning. It demonstrates
that the fixed-rate upsampler resolves semi-supervised learning at
a low sampling rate more effectively than the imputation methods
which assume irregular input time series. In other words, impu-
tation methods followed by a classifier are not optimal for our
problem setting.

4.6 A Case Study on an ECG Dataset with
Heterogeneous Sampling Rates

Extensive healthcare data has been generated as a result of recent
developments in wearable medical devices, albeit at heterogeneous
sampling rates [60]. This challenge directly fits our novel prob-
lem, semi-supervised learning with low-sampling-rate time series,
so we conducted a case study on an ECG dataset [23, 43, 44] of
mixed sampling rates. We specifically used a dataset at 500Hz and
1000Hz, segmented into three-second intervals. The dataset com-
prises 12 features, 7 categories, 4000 training instances, and 1000
4https://github.com/reml-lab/mTAN
5https://github.com/reml-lab/hetvae

Table 8: Result of the case study. Classification accuracy on
500Hz ECG data compared to semi-supervised learning base-
lines and other upsamplers.

Method Accuracy

Fully-Supervised TCN(100%) 71.90
TCN(30%) 69.70

Semi-Supervised
FixMatch 74.00
FreeMatch 71.70
ReMixMatch 74.40

Upsampler Variation Sub-Pixel Conv 73.10
LTE 73.50

SemiTSR (ours) 75.20

test instances for each sampling rate. According to Table 8, SemiTSR
outperforms semi-supervised learning baselines as well as other
upsampler methods on the inference of the 500Hz data by utilizing
the 30% of the labeled 1000Hz data. It demonstrates that SemiTSR
is extendable not only in situations where the sampling rate of a
single device is varied but also in situations where data is generated
from multiple devices with various sampling rates.

More Results in the Appendix: Appendix C reports (i) the clas-
sification accuracy on a different classifier backbone, Transformer,
(ii) the computation efficiency of SemiTSR, and (iii) the classifi-
cation accuracy of high-sampling-rate data. Further analysis of
reconstruction quality is conducted in Appendix D.

5 Conclusion
This paper introduces SemiTSR, a semi-supervised learning frame-
work for the low-sampling-rate time series. It aims to recover the
lost information caused by reducing the sampling rate by recon-
structing the time series at its original sampling rate and performing
classification. In particular, our temporal upsampler considers rela-
tive phase and periodicity of the target timestamp by comparing
the time embedding that reflects local context. Furthermore, con-
sistency regularization on the instances of different phases enables
to reconstruct and classify within a class more accurately. Exper-
iments demonstrate improved classification accuracy for various
low-sampling-rates and labeled ratios than prior semi-supervised
learning methods. We anticipate that our work will contribute to
time-series modeling where labels are scarce and sampling rate
must be reduced due to practical constraints.

We expect that our novel upsampler can be transferred to en-
hance any time-series analysis tasks on low sampling rates. Nev-
ertheless, the current design of phase consistency regularization
is tailored for classification but is difficult to apply to forecasting.
Extending the upsampler for low-sampling-rate forecasting would
be a meaningful direction of future work.
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A Datasets
Opportunity, InsectSound, and mHealth are widely-used public
datasets in time-series classification, while SAMSUNG is a pro-
prietary dataset obtained from a server monitoring system.
Opportunity [10] is a human activity recognition dataset measured
by wearable, object, and ambient sensors at a sampling rate of
30Hz. We preprocessed the dataset [41] and removed Null class
from the 18 original gesture classes: Open / Close Dishwasher /
Fridge / Drawer1(2,3) / Door1(2), Drink from Cup, Clean Table,
Toggle Switch, and Null.
InsectSound [11] consists of audio time-series data derived from
insect wingbeat to classify the species and determine the sex. It is
collected at a sampling rate of 6000Hz.
mHealth [4] records body motions and vital signs measured from
3D accelerometers, 3D gyroscopes, 3D magnetometers, and elec-
trocardiograms, sampled at a rate of 50Hz. It is categorized into 12
distinct activity classes: Stand, Sit, Lie, Walk, Upstairs, Waist Bend,
Raise Arms, Crouch, Cycle, Jog, Run, and Jump.
SAMSUNG consists of time-series data obtained from a server
monitoring system, collected every two minutes. The dataset is
labeled by the modules to which the servers belong.

B Details on Semi-Supervised Learning
Baselines

For augmentation strategies, FixMatch and FreeMatch utilize Ran-
dAugment [14], and ReMixMatch proposes CTAugment. However,
a time series is vulnerable to arbitrary augmentations due to its
diverse and unstationary distributions. Also, forcing invariances
which are appropriate to the image domain decreases downstream
task performance depending on the dataset [26]. Accordingly, we
selected the augmentation [6, 16] that works well for each dataset,
as described in Table 9. Since unlabeled and labeled data share the
window size in typical semi-supervised learning, we downsample
the labeled high-sampling-rate data to have the same window size
with the unlabeled low-sampling-rate data.

Table 9: Augmentation strategy for semi-supervised learning
baselines. 𝜖 is a Gaussian noise variable, 𝑠 is a scale factor,
and 𝑛,ℎ are the number of holes and the relative length of
the hole to the window.

Datasets Weak Augmentation Strong Augmentation

Opportunity jitter 𝜖 ∼ 𝑁 (0, 0.3) scale 𝑠 ∼ 𝑁 (1.1, 0.8)

InsectSound cutout 𝑛 = 1, ℎ = 0.1 cutout

{
𝑛 = 2, ℎ = 0.1 𝛾 = 1

2
𝑛 = 1, ℎ = 0.2 𝛾 ∈ ( 14 ,

1
8 )

mHealth jitter 𝜖 ∼ 𝑁 (0, 0.3) scale 𝑠 ∼ 𝑁 (1.1, 0.8)
SAMSUNG cutout 𝑛 = 1, ℎ = 0.1 cutout 𝑛 = 2, ℎ = 0.1

C Additional Experiments
Classification Accuracy on Different Classifier Backbones:
Table 10 compares the classification accuracy of SemiTSR and semi-
supervsied learning baselines as well as fully supervised learning
when the classifier backbone M𝑐𝑙𝑠 is Transformer. SemiTSR out-
performs the other semi-supervised learning baselines in various
datasets, low-sampling-rates, and labeled ratios.

Table 10: Accuracy comparison of semi-supervised learning
methods when the classifier backbone is Transformer.

Method Opportunity mHealth
1/8 1/16 1/4 1/8

Fully-Supervised(100%) 65.06 62.59 91.35 92.68
(±1.11) (±1.08) (±1.40) (±1.82)

Fully-Supervised(20%) 59.09 55.91 85.23 85.19
(±2.74) (±1.61) (±3.25) (±1.43)

FixMatch(20%) 67.96 64.61 91.60 89.26
(±2.55) (±0.91) (±2.33) (±1.85)

FreeMatch(20%) 67.71 65.50 92.43 89.85
(±1.94) (±1.33) (±4.57) (±1.84)

ReMixMatch(20%) 68.72 66.13 94.79 94.26
(±0.72) (±1.20) (±1.14) (±2.41)

SemiTSR(20%) 69.43 68.30 96.34 94.45
(±2.02) (±1.29) (±2.17) (±1.12)

Fully-Supervised(10%) 54.33 51.50 79.85 76.58
(±2.70) (±1.09) (±3.41) (±4.37)

FixMatch(10%) 63.94 61.36 84.64 81.03
(±2.29) (±1.83) (±3.04) (±5.59)

FreeMatch(10%) 65.10 62.93 88.04 84.01
(±1.19) (±1.50) (±2.84) (±5.40)

ReMixMatch(10%) 68.32 64.70 88.29 86.22
(±1.22) (±1.09) (±3.58) (±6.16)

SemiTSR(10%) 67.20 64.69 92.90 90.77
(±1.13) (±1.00) (±2.69) (±3.76)

Table 11: Inference time in seconds of low-sampling-rate data
classification and SemiTSR (reconstruction+classification).

Method\Datasets Opportunity(1/8) mHealth(1/8)

TCN 0.00313 0.00409
SemiTSR 0.01161 0.01412

Table 12: Classification accuracy on high-sampling-rate data.

Method Labeled Ratio Sampling Rate Opportunity mHealth

TCN 20% 1/1 65.01 92.26
(±2.00) (±4.80)

SemiTSR 20% 1/4 71.80 95.25
(±1.50) (±2.77)

SemiTSR 20% 1/8 71.41 93.21
(±1.54) (±2.72)

TCN 10% 1/1 59.20 87.64
(±1.80) (±3.35)

SemiTSR 10% 1/4 66.22 90.93
(±3.14) (±2.32)

SemiTSR 10% 1/8 65.41 91.24
(±3.20) (±3.30)

Computation Efficiency: We evaluated the inference time, in
seconds, for the classification model and SemiTSR, which involves
the classification model subsequent to the reconstruction model.
Both the classification model and SemiTSR use the low-sampling-
rate data as their input. We used Opportunity and mHealth due to
their largest feature dimensionality and sequence length. Table 11
shows the results. When the sampling rate is 1/8, SemiTSR took
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Table 13: MSE comparison of our temporal upsampler and the others based on the same deep feature encoder.

Labeled Ratio Upsmapler Opportunity InsectSound mHealth SAMSUNG
1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/2 1/4 1/8 1/2 1/4 1/8

20%

Sub-Pixel Conv 0.1296 0.3035 0.5124 0.6799 0.1364 0.5431 1.1083 0.1735 0.2893 0.4140 0.0147 0.0228 0.0300
(±0.0046) (±0.0009) (±0.0063) (±0.0057) (±0.0024) (±0.0132) (±0.0362) (±0.0130) (±0.0034) (±0.0206) (±0.0003) (±0.0002) (±0.0007)

LTE 0.1072 0.2792 0.5185 0.8056 0.1487 0.5328 0.9469 0.1674 0.3045 0.4567 0.0150 0.0232 0.0300
(±0.0000) (±0.0004) (±0.0005) (±0.0019) (±0.0009) (±0.0023) (±0.0408) (±0.0054) (±0.0038) (±0.0110) (±0.0008) (±0.0009) (±0.0008)

SemiTSR
0.1179 0.2811 0.4795 0.6290 0.1352 0.5288 1.0023 0.1659 0.2836 0.3930 0.0147 0.0249 0.0307

(±0.0006) (±0.0017) (±0.0082) (±0.0025) (±0.0005) (±0.0083) (±0.0225) (±0.0066) (±0.0044) (±0.0039) (±0.0007) (±0.0010) (±0.0013)

10%

Sub-Pixel Conv 0.1414 0.3308 0.5444 0.7132 0.1573 0.5494 1.1530 0.1833 0.3062 0.4257 0.0150 0.0241 0.0305
(±0.0074) (±0.0159) (±0.0057) (±0.0039) (±0.0409) (±0.0125) (±0.0176) (±0.0170) (±0.0043) (±0.0062) (±0.0002) (±0.0001) (±0.0005)

LTE 0.1072 0.2792 0.5186 0.8057 0.1503 0.5341 1.0233 0.1684 0.3066 0.4609 0.0156 0.0231 0.0304
(±0.0000) (±0.0004) (±0.0005) (±0.0019) (±0.0009) (±0.0028) (±0.0442) (±0.0065) (±0.0035) (±0.0115) (±0.0008) (±0.0005) (±0.0006)

SemiTSR
0.1225 0.3030 0.5028 0.6971 0.1357 0.5368 0.9588 0.1724 0.2905 0.3599 0.0149 0.0258 0.0316

(±0.0030) (±0.0090) (±0.0066) (±0.0449) (±0.0005) (±0.0122) (±0.0329) (±0.0101) (±0.0044) (±0.0439) (±0.0007) (±0.0011) (±0.0009)

Reconstruction Ground Truth Lowest MSE
Sub-Pixel Convolution

LTE

Temporal Upsampler

Figure 11: Visualization of InsectSound reconstruction using
different upsampling methods. 𝛾 is 1

8 and 𝑙 is 10%. The two
columns are different instances.

Reconstruction Ground Truth Lowest MSE
Sub-Pixel Convolution

LTE

Temporal Upsampler

Figure 12: Visualization of mHealth reconstruction using dif-
ferent upsampling methods. 𝛾 is 1

8 and 𝑙 is 10% . The two
columns are different instances.

3.45–3.71 times longer than the classification model only with low-
sampling-rate data. Because the inference time per batch takes
8.5–10ms longer, it is worthwhile to incur the additional cost for
saving storage and network load while simultaneously increasing
accuracy. The train time is also linear to the inference time.
Classification Accuracy on High-Sampling-Rate Data: While
our primary focus is on classifying low-sampling-rate data to reduce
the costs associated with data gathering and labeling, our approach
can also be applied in the mixed sampling-rates inference. We
additionally conducted inference on high-sampling-rate data using
the classification module of SemiTSR, which is trained with both
the low-sampling-rate and high-sampling-rate data. As evident in
Table 12, the performance of inference on high-sampling-rate data,
when trained using SemiTSR, surpasses that of fully-supervised
learning across all labeled ratios.

D Additional Analysis on Reconstruction
Quality

Table 13 shows the mean squared error of the reconstructed and
ground-truth high-sampling-rate time series using various upsam-
plers. The temporal upsampler exhibited lower reconstruction error
than the other methods in more than half of the combinations. It
is obvious that the high classification accuracy in Table 5 is partly
attributed to the high reconstruction quality in Table 13. In the
meantime, the temporal upsampler was unable to achieve the low-
est reconstruction error despite having the highest classification
accuracy in certain combinations. We conjecture that this incon-
sistency is due to the fact that a low reconstruction error does not
always guarantee a high reconstruction quality. In the first column
of Figure 11, LTE exhibits the lowest reconstruction MSE despite
predicting the frequency incorrectly. The second column of Figure
12 also shows that overly smoothed reconstruction of LTE has the
lowest reconstruction MSE, while the temporal upsampler restores
the meaningful periodicity.
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