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ABSTRACT
MapReduce has become a dominant framework in big data analy-
sis, and thus there have been significant efforts to implement var-
ious data analysis algorithms in MapReduce. Many data analy-
sis algorithms are inherently iterative, repeating the same set of
tasks until a convergence. To efficiently support iterative algo-
rithms at scale, a few variants of Hadoop and new platforms have
been proposed and actively developed in both academia and indus-
try. Representative systems include HaLoop, iMapReduce, Twister,
and Spark. In this paper, we experimentally compare Hadoop and
the aforementioned systems using various workloads and metrics.
The five systems are compared through four iterative algorithms—
PageRank, recursive query, k-means, and logistic regression—on
50 Amazon EC2 machines (200 cores in total). We thoroughly ex-
plore the effectiveness of their new caching, communication, and
scheduling mechanisms in support of iterative computation. Our
evaluation also shows the performance depending on data skew-
ness and memory residency. Overall, we believe that our evaluation
and interpretation will be useful for designing a new framework or
improving the existing ones.
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1. INTRODUCTION
MapReduce [5] has become the most popular framework for

large-scale processing and big data analysis. It allows us to eas-
ily develop distributed, parallel applications running in a cluster of
commodity machines, without tedious detail of distributed execu-
tion such as scheduling and fault-tolerance. Its sweet spot is known
to be batch processing of data-intensive tasks [6]. Thus, many data-
intensive database and data mining operations, such as similarity
join and decision tree classification, have been successfully trans-
lated to the MapReduce framework [15]. As a result, we have wit-
nessed remarkable performance improvements compared to orig-
inal implementations. Moreover, Hadoop [1], an open-source im-
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plementation of MapReduce, has contributed to the huge success
of the framework.

Despite its popularity, MapReduce has faced criticisms for its
performance limitations in several advanced applications [6, 12].
One of such criticisms is the inefficiency of handling iterative al-
gorithms [2, 3, 4, 7, 17, 18]. Many data analysis algorithms, such
as PageRank, recursive query, k-means, and logistic regression, re-
quire iterative computation, repeatedly executing the same set of
tasks until a stopping condition is satisfied. MapReduce does not
directly support such iterative computation, but users could hand-
craft a chain of MapReduce jobs by writing a driver program [14].
Although this naïve implementation can scale beyond capacity of
a single machine, it may incur severe performance penalty because
the framework is not aware of the iteration. For example, the data
sets invariant while running an algorithm must be loaded and pro-
cessed repeatedly for each iteration, thereby wasting disk I/O, net-
work bandwidth, and CPU resources.

To alleviate the inefficiency for iterative algorithms, some vari-
ants of Hadoop and new platforms have been developed in re-
search and open-source communities. Representative systems in-
clude HaLoop [2, 3], Twister [7], iMapReduce [18], MapReduce
Online [4], and Spark [17]. HaLoop, iMapReduce, and MapReduce
Online are implemented by modifying the MapReduce component
of Hadoop, whereas Twister and Spark are implemented indepen-
dently from Hadoop. Various techniques such as disk caches and
distributed shared memory have been incorporated into those sys-
tems in support of efficient iterative computation.

To the best of our knowledge, those systems have not been sys-
tematically compared with one another, though each system was
compared against Hadoop only. Therefore, to examine a broad
range of techniques, we choose five systems—Hadoop, HaLoop,
Twister, iMapReduce, and Spark—for our comparison. Hadoop is
the baseline which lacks the capability of handling iterative com-
putation. HaLoop, Twister, and iMapReduce are research proto-
types, which all of them are being actively cited. MapReduce On-
line is not explicitly included since iMapReduce is built on top of
it. Apache Spark is included mainly because of its popularity in
recent days even though it does not strictly conform to the MapRe-
duce paradigm. However, we do not include graph processing sys-
tems [8] such as Pregel and GraphLab in our comparison, because
the scope of this paper is comparison of “MapReduce-like” general
purpose systems rather than graph processing systems.

In this paper, we experimentally compare the five systems, seek-
ing for in-depth understanding of the performance of iterative com-
putation. Since three of them are just research prototypes and are
not optimized to production level, we do not concentrate on the ab-
solute performance of each system but on the intrinsic capabilities
and the techniques to support iteration in each system.
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Specifically, the contributions of this paper include:

1. We investigate the impacts of such techniques on performance
through systematic and fair comparison of the systems. To pre-
cisely explain the impacts, we use various evaluation metrics as
well as various workloads generated by running diverse algo-
rithms on both real-world and synthetic data sets (Section 3).

2. We discuss the advantages and disadvantages of the systems
with regard to iterative computation such that users and devel-
opers can exploit our lessons in the use and development of such
systems (Section 4).

We found that all systems are scalable but some of the key tech-
niques such as input data caching may have diminishing return
depending on data sets and algorithms. The primary factors on
the performance are shown to be the size of input and intermedi-
ate data, invariability of the keys of intermediate data, efficiency
of network communication, flexibility of task scheduling, and so
on. Also, we observed that memory-based engines generally per-
form better than disk-based engines but the performance rapidly
degrades when the data does not fit in memory.

The full (10 page) version of this paper is available at http://dm.
kaist.ac.kr/lab/papers/cikm16_expr_full.pdf. The source code is
available at https://github.com/IterativeExperimentsMapReduce.

2. EVALUATION METHODOLOGY

2.1 Cluster and System Setup
We conduct experiments on an Amazon EC2 cluster (Sections

3.1–3.3) or on a local cluster (Section 3.4), as described below.

• Amazon EC2 cluster: The cluster consists of 50 m1.xlarge
Amazon EC2 spot instances, located in US West (Oregon).
Each instance has four virtual CPUs, 4×420 GB of local stor-
age, and 15 GB of main memory. All instances run on Ubuntu
14.04.1 LTS.

• Local cluster: The cluster consists of 4 commodity servers. A
server has two Intel Core i7-4790 CPUs, each equipped with
four cores, 1 TB of local storage, and 32 GB of main mem-
ory. Thus, this cluster has 32 cores in total. All servers run
on Ubuntu 14.01 LTS.

We use Hadoop 1.2.1, HaLoop 0.20.2, Twister 0.9, iMapReduce
0.1, and Spark 1.2.0. HaLoop and iMapReduce are implemented
using Hadoop 0.8 and 0.19.2 respectively. Twister is configured to
use ActiveMQ [16] 5.4.3 for its message broker. Spark runs with
Scala 2.10.0 and Hadoop 1.2.1. JDK 1.8.0 is used for running the
systems. The maximum per-machine Java heap size is configured
to be 12 GB.

2.2 Data Sets

2.2.1 Real-World Data Sets
We use the real-world data sets in Table 1, which are character-

ized into graph data and row data. The two graph data sets are used
for both PageRank and recursive query, and the two row data sets
are used for k-means and logistic regression respectively.

As for graph data, LiveJournal is a social network data set avail-
able at the SNAP repository [13]. ClueWeb is a web graph data
set, and we use TREC Category B1. ClueWeb has much more ver-
tices and edges than LiveJournal. LiveJournal is more densely-
connected than ClueWeb, in that the average degree (i.e., the ratio
of the number of vertices to that of edges) of the former is about ten

1http://lemurproject.org/clueweb09/

times higher than that of the latter. We substitute all vertex identi-
fiers in LiveJournal with longer strings to increase its size without
changing its network structure, just like Bu et al. [2, 3] did. As a
result, the data set was extended from 1 GB to 10 GB.

As for row data, Cosmo-Gas and Cosmo-All are scientific sim-
ulation data sets, where each row represents the information of a
particle. Cosmo-All has all particles of the cosmo50 data set [10],
whereas Cosmo-Gas contains only the gas particles. For k-means
clustering, the three variables for x, y, and z positions are kept with
Cosmo-Gas. For logistic regression, a binary variable that indicates
if a row is a star particle is added to Cosmo-All as a dependent vari-
able, and other variables are used as independent variables.

Table 1: Real-world data sets used for all algorithms.

Graph Data Algorithms # of Vertices # of Edges

LiveJournal PageRank,
Recursive

4,847,571 68,993,773
ClueWeb 428,136,613 454,075,638

Row Data Algorithm # of Points # of Dims

Cosmo-Gas k-means 147,251,521 3

Cosmo-All Logistic 315,086,245 10

With these base data sets in Table 1, we generate various sizes of
data sets to test the scalability of the systems. In the next section,
“1X”∼“5X” indicate the variations of a data set having propor-
tional sizes. For LiveJournal, ClueWeb, and Cosmo-Gas, the base
data set becomes “1X”, and larger ones are generated by replicating
it by 2, 3, 4, and 5 times. When replicating Cosmo-Gas, Gaussian
noises are added in order to avoid the exactly same values. For
Cosmo-All, the base data set becomes “5X” since it is sufficiently
large, and smaller ones are obtained by randomly sampling 20%,
40%, 60%, and 80% of the base data set.

2.2.2 Synthetic Data Sets
We use also synthetic data sets in order to investigate the re-

sponse of each system to the skewness of the input data. The per-
formance of PageRank is sensitive to skewness since the algorithm
sends PageRank contributions to more neighbors on higher-degree
vertices. The LFR benchmark [11] generates graph data sets for
use in PageRank, which are summarized in Table 2. They are gen-
erated according to the following parameters: N is the number of
vertices, 〈k〉 is the average degree, max_k is the maximum degree,
and t1 is the exponent part of the power-law distribution of degrees.
Here, max_k exponentially increases while N and 〈k〉 are fixed.
As max_k gets larger, the degree values should disperse to a larger
range to keep 〈k〉 the same; that is, the skewness of degrees gets
higher. Consequently, some tasks will transfer much larger number
of PageRank contributions than others. In this way, we control the
skewness between the tasks.

Table 2: Synthetic graph data sets used for PageRank.

Data Set N 〈k〉 max_k t1

LFR1

200,000 1,000

1, 000× 1.60

2
LFR2 1, 000× 1.61

LFR3 1, 000× 1.62

LFR4 1, 000× 1.63

LFR5 1, 000× 1.64

2.3 Evaluation Metrics
Total elapsed time is the time spent for running an algorithm

against a data set on a specific system. Total elapsed time is deter-
mined to be the interval between the job finish time and the job start
time included in system log files. On the other hand, some systems
require reformatting or full duplication of input data before run-
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Figure 1: Total elapsed time of the five systems (50 machines).

Table 3: Total HDFS read in Figure 1 (Unit: GB).
Systems 1a 1b 1c 1d 1e 1f

Hadoop 134.052 213.045 100.732 82.037 65.433 82.027

HaLoop 44.173 143.668 11.300 7.179 51.934 74.526

iMapReduce 6.240 30.534 - - - -

Spark 9.900 7.600 9.900 7.600 6.500 8.200

Table 4: Reduce shuffle I/O in Figure 1 (Unit: MB).
Systems 1a 1b 1c 1d 1e 1f

Hadoop 30,593 241,205 14,943 98,227 0.847 0.241

HaLoop 16,912 141,951 2,979 9,642 0.818 0.739

iMapReduce 970 16,842 - - - -

Spark 8,500 34,600 2,883 2.601 1.988 0

ning a main job, and this preprocessing time is not included in total
elapsed time since it is a one-time cost.

Normalized time is the ratio of the total elapsed time of a cer-
tain configuration to that of the base configuration. For example,
in scalability tests, normalized time is the ratio of the total elapsed
time for a certain data set to that for the smallest data set. Conse-
quently, normalized time always starts from 1. It shows sensitivity
of the total elapsed time to the change of a parameter value. The
intention of this normalization is to mitigate the difference in ma-
turity of each system.

Total HDFS read is the total amount of the data read from the
HDFS—not from the local file system—during the entire execution
of an algorithm. This metric assesses how effectively each system
reduces remote disk I/O. It is the sum of the outputs of the counter
“HDFS_BYTES_READ” for Hadoop, HaLoop, and iMapReduce;
and it is the first output of the counter “Input” for Spark since the
subsequent outputs of that counter indicate the accesses to the RDD
which is typically stored in main memory.

Reduce shuffle I/O is the total amount of the data shuffled from
mappers to reducers during the entire execution of an algorithm.
This metric assesses how effectively each system reduces network
communication for the shuffle. It is the sum of the outputs of the
counter “Reduce Shuffle Bytes” for Hadoop and HaLoop, a cus-
tom counter added by the authors for iMapReduce, and the counter
“Shuffle Read” for Spark.

We measure those metrics mostly twice and choose one measure-
ment after confirming that the two measurements do not vary sig-
nificantly, since it is too expensive to repeat many times on Amazon
EC2. If an execution does not finish within two hours, we terminate
the execution and give up obtaining the corresponding result.

3. EVALUATION RESULTS

3.1 Overall Comparison
Figure 1 shows the total elapsed time of the five systems for the

six combinations of algorithms and data sets. More importantly,
we would like to figure out the overall performance characteris-
tics of the five systems. Overall, Hadoop showed the worst per-
formance as expected; HaLoop showed a little improvements over
Hadoop; iMapReduce and Twister showed more improvements
than HaLoop; and Spark in general achieved the best performance.
Since Spark is maintained and tuned by a vibrant open-source com-
munity, this commercial-quality tuning in addition to the advantage
of its framework seems to contribute to the highest performance.

To facilitate this comparison of the overall performances, we
present the results for total HDFS read and reduce shuffle I/O2 of
Figure 1 since these two metrics impact greatly on the total elapsed
time. As for the former in Table 3, because the cache of each
system converts remote disk I/O to local disk I/O, a value repre-
sents how much such a caching mechanism effectively reduces re-
mote disk I/O. Roughly speaking, the difference between Hadoop
and another system indicates the amount of disk I/O saved by the
caching mechanism. As for the latter in Table 4, a value represents
the amount of the data transferred from mappers to reducers, which
incurs network communication. PageRank has high values owing
to the PageRank contributions of all vertices, recursive query has
moderate values since it carries only reachable vertices, and both k-
means and logistic regression have low values since they need only
the centroid or parameter information. In both tables, the smaller
a value is, the higher the performance is. These values are highly
correlated to the total elapsed time except HaLoop (owing to a con-
figuration issue which will be explained later).

Before going into the details, we would like to address a few
points that will be referenced for the interpretation of the results.

• Remark 1: The communication efficiency (network utiliza-
tion) is higher in Spark than in Twister since Twister performs
broadcasting via a broker network. In other words, Twister re-
quires significant effort in tuning the broker network to achieve
high performance.

• Remark 2: Removing duplicates in recursive query tends to
be more efficient in Twister than in Spark. Spark processes it at
once globally according to lazy evaluation [9], whereas Twister
is originally designed to do it in two steps—locally on each
worker and then globally on the combiner.

• Remark 3: The amount of the data shuffled tends to be larger
in PageRank than in recursive query because of the characteris-
tics of the algorithms, as shown in Table 4.

• Remark 4: The amount of the data shuffled in recursive query
is larger for LiveJournal than for ClueWeb since the former is
much more densely-connected than the latter. See the entries of
Spark in Table 4 where the static data is completely cached.

Twister vs. Spark
Spark and Twister are similar in that both are memory-based en-

gines. Since the results of recursive query were available for two

2The results are not available for Twister since it does not provide
counters.
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Figure 2: Normalized time of the five systems with varying the data size (50 machines).
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Figure 3: Normalized time of the five systems with varying the iteration number (50 machines).

different data sets, we compared the relative performance between
these systems using Figures 1c and 1d. Twister showed lower per-
formance than Spark in Figure 1c by Remark 1 and Remark 4
since the higher shuffle cost was managed well in Spark but not in
Twister. On the other hand, Spark showed lower performance than
Twister in Figure 1d by Remark 2. In Figure 1c, duplicate removal
was done entirely on main memory in both systems. In Figure 1d,
however, Spark spilled intermediate results to local disk owing a
larger size of ClueWeb whereas Twister did not. Twister needed
less memory than Spark because of its two-step approach.

We note that this difference is attributed to the architectural
choices made in Twister and Spark: two-step and lazy evaluations.
Spark adopts lazy evaluation to avoid unnecessary computation,
but its benefit was hidden because Spark had to spill intermediate
results. We did not inject the two-step approach into Spark even
though we could do it. Again, please recall that our strategy is to
follow the conventional style for each system.

Hadoop vs. HaLoop
Hadoop and HaLoop are similar in that HaLoop is a direct ex-

tension of Hadoop. The performance improvement in HaLoop is
mostly achieved by the reducer input cache which converts HDFS
I/O to local disk I/O [2]. The size of static data that can benefit
from the reducer input cache is much larger for ClueWeb than for
LiveJournal. Thus, the difference between Hadoop and HaLoop
became more prominent in Figures 1b and 1d with ClueWeb than
in Figures 1a and 1c with LiveJournal.

The effect of the reducer input cache can be marginal depend-
ing on the algorithms. In PageRank, recursive query, and logistic
regression, the keys of the intermediate results that determine the
reducer to be sent do not change across iterations. In contrast, in
k-means, the keys of the intermediate results are determined by the
current set of centroids, changing per iteration. Thus, the hit ratio
of the reducer input cache cannot be very high. On the other hand,
the mapper input cache is more important for k-means than the re-
ducer input cache. Not surprisingly, Hadoop manages this issue by
observing data locality, as shown by Figure 1e.

The reducer input cache is also less effective when intermediate
data is small. With regard to logistic regression in Figure 1f, the
size of the intermediate results to be shuffled is tiny as in Table 4,
because they are partial sums of the parameter values. Also, they
do not need to be joined with the static data.

iMapReduce
iMapReduce showed the best performance among the disk-based

engines but showed worse performance than the memory-based en-
gines. The performance gain is mostly achieved by the persistent
connections between each pair of a map task and a reduce task. Its
effect was verified by the smaller amounts of the total HDFS read
and the reduce shuffle I/O in Tables 3 and 4. However, it was dif-
ficult to draw meaningful conclusions about iMapReduce since we
could not complete many experiments due to its instability.

3.2 Effect of Data Size
Figure 2 shows the normalized time of the five systems for the

same six combinations of algorithms and data sets as the data size
increases from the data set 1X to the data set 5X. (1) In general, the
disk-based engines showed sub-linear scalability as the data size
increased. This high scalability is a little misleading because the
elapsed time of a disk-based engine with 1X was much longer than
that of a memory-based engine. Thus, the normalized elapsed time
even for the same elapsed time was shown to be lower in Hadoop or
HaLoop. (2) On the other hand, we observed that the elapsed time
of a memory-based engine sometimes rapidly increased as the data
size increased when the systems start using disk as well because a
data set did not fit in main memory.

A few interesting observations in Figure 2 with regard to the
memory-based engines are as follows.

• In Figures 2a and 2d, the elapsed time of Twister started to in-
crease rapidly at 3X or 4X. ActiveMQ, the broker service, was
configured to use 5 GB of main memory. When we measured
the size of the data transferred from the master to each worker in
Figure 2a, it amounted to 2.32 GB for 1X, 4.66 GB for 2X, and
7.86 GB for 3X. Thus, ActiveMQ used disk from 3X, causing
the slow down in broadcasting.

• Since all the implementations are in Java, garbage collection
has significant impact on the performance of the memory-based
engines. A major (or full) garbage collection is triggered when
the amount of available memory falls below a certain threshold.
It is costly but occurs quite infrequently. We found that ma-
jor garbage collection occurred for Twister with 4X and 5X in
Figure 2d, contributed to the increase of the execution time.

• In comparison between Figure 2a and Figure 2b, the elapsed
time of Spark increased more rapidly as the data size increased
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with ClueWeb than with LiveJournal. The main difference be-
tween the two cases is whether disk was used for the shuf-
fle. While no disk was used with LiveJournal, 34 GB (1X) to
484 GB (5X) of disk space was used with ClueWeb.

3.3 Effect of Iteration Number
Figure 3 shows the normalized time of the five systems for the

same six combinations of algorithms and data sets as the number
of iterations increases from 2 to 10. All five systems showed rea-
sonable increases as the number of iterations increased. That is, the
elapsed time for each iteration was nearly constant or even became
a little smaller as an algorithm proceeded.

The disk-based engines in general showed constant elapsed time
per iteration as shown in the close-to linear slope of Hadoop or
HaLoop except in Figure 3d. The memory-based engines typically
showed gentle slopes, meaning that the time added after the first it-
eration was relatively small. This is because after Twister or Spark
load static data from the local disk or HDFS, as long as main mem-
ory is sufficient to hold static and variable data, they do not have to
access disk anymore.

A few noticeable observations in Figure 3 are as follows.

• In Figure 3d, the slope of Hadoop was much steeper than
those of the other systems, partially because of generally higher
slopes for recursive query than for the other algorithms. Since
there is no previous result to check duplicates at the beginning,
the proportion of the first iteration is not very significant in re-
cursive query compared with the other algorithms.

• The slope of Twister was lower in Figures 3d, 3e, and 3f than in
Figures 3a and 3c. This trend can be explained by the amounts
of reducer shuffle I/O, i.e., by Remark 3 and Remark 4. The
size of the static data mainly affects the elapsed time of the first
iteration, whereas the size of the shuffled data mainly affects
that of a subsequent iteration. Nevertheless, in Figure 3c, Spark
showed higher efficiency than Twister by virtue of Remark 1.

• The slope of Spark was very low in Figures 3e and 3f for the
same reason as above. While the slope of Spark was kept to
be low in other figures, it became steeper in Figures 3c and 3d
owing to Remark 2 as well as in Figures 3a and 3b owing to
Remark 3.

3.4 Effect of Data Skew
This experiment was conducted by running three reducers on our

local cluster. Since the vertices in a LFR network were sorted in the
order of their degrees, we divided the network into input splits by
range partitioning to maximize data skew across input splits.

Figure 4 shows the elapsed time of the five systems. The elapsed
time of Hadoop, HaLoop, and iMapReduce all increased as the
skewness became higher. Comparing the increase rate, Hadoop and
HaLoop did not show a significant difference—in both systems by
1.5 times from LFR1 to LFR5. iMapReduce showed a little higher
rate (1.7 times) than the two systems. This higher rate was mainly
caused by the one-to-one correspondence between mappers and re-
ducers, which hindered the flexibility of scheduling.

Interestingly, Twister and Spark showed almost constant execu-
tion time regardless of the skewness. (1) Twister, because of its
characteristics of relying on the combiner, typically does not use
the vertex id as the key unlike other systems, but uses the index
of the map task and pads the PageRank contributions to the value
part of a key-value pair. In this way, each reducer will receive al-
most the same number of PageRank contributions since the keys
are evenly distributed irrelevant to the skewness. Partial sums are
obtained in each reducer, and these partial sums are aggregated in
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Figure 4: Elapsed time with varying skewness (4 machines).

the combiner. (2) Spark calculates partial sums by using the func-
tion reduceByKey [9]. Thus, even though a partition contains the
vertices of high degrees, the PageRank contributions emitted from
that partition to the same destination can be summed up locally. As
a result, this function manages the amount of the data shuffled to
other workers, just like the combiner of Hadoop. On the other hand,
the implementations provided by the authors for Hadoop, HaLoop,
and iMapReduce did not use the combiner for PageRank.

4. LESSONS LEARNED
In this section, we discuss the lessons learned from the experi-

ments and identify missing opportunities.

Caching Mechanism, Memory Management
• The reducer input cache of HaLoop is effective especially when

the static data is large. The cache is also sensitive to the char-
acteristics of an algorithm as we observed in the k-means ex-
periments. In a nut shell, memory-based engines are also effec-
tively implementing the same technique by caching the static
data in memory. To maximize its benefit, the algorithm devel-
opers should be aware of such static data partitioning. From the
system perspective, an efficient indexing mechanism to quickly
retrieve a cached entry would be useful for the developers.

• Memory-based engines are much more efficient than disk-based
engines. Thus, the system and algorithm developers should pay
more attention to memory management as it is a more critical
resource in memory-based engines than in disk-based engines.
Selectively storing static or variable data on main memory, just
like the function persist of the RDD in Spark, is helpful to
reduce the overall usage of main memory. Also, the perfor-
mance of memory-based engines significantly degrades under
low-memory condition. Smooth transition from memory to disk
using faster storage (e.g., SSD) and efficient spilling would be
challenging but interesting.

Programming Model, High-Level Interface
• An iteration may consist of complex data flows, and MapRe-

duce may not be the best way to express such algorithms. For
example, the map phase is always required before repartition
even though no transformation is necessary. A flexible pro-
gramming model in Spark allows users to express more generic
data flows beyond the strict MapReduce API.

• It is promising to have a declarative language like SQL with it-
erative construct that can be translated into a well-understood
set of operators and data structures so that let users focus on
“what” rather than “how” as well. Spark is the closest in this
direction among the systems evaluated in this paper by provid-
ing a set of well-understood operations such as map, filter, and
joins. Optimizing the iterative data flow with these oprations is
another interesting area of research.
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Data Transfer, Network Communication
• It is not always beneficial to force all reduce outputs to be col-

lected by the combiner in Twister. Checking a convergence
condition sometimes can be omitted since one may want to ter-
minate an iterative algorithm after a fixed number of iterations.
The combiner necessarily becomes a bottleneck and at the same
time a single point of failure.

• Efficient data transfer is crucial to achieve high performance.
Twister delegates data transfer to the broker network, which re-
quires significant expertise in tuning. Although the feature-rich
communication layer may greatly simplify a distributed system,
it adds more cost and complexity to the setup and maintenance
of the whole system.

• We found that a broadcast is a frequent communication pat-
tern in iterative algorithms. Also, hierarchical aggregation, e.g.,
which aggregates locally in the reducers and then again in the
combiner as in recursive query of Twister, is beneficial for scal-
ability and robust to data skew. Optimizing such common com-
munication patterns is critical to achieve high performance.

Data Skew, Persistent & Asynchronous Execution
• Data skew in iterative algorithms can be mitigated by key reas-

signment and/or hierarchical (partial) aggregation, as shown in
Twister and Spark.

• The benefit of persistent socket connection in iMapReduce is
not verified in our experiments. Although the reduce shuffle
I/O is reduced dramatically, the gain in total elapsed time is not
as significant. In addition, persistent connection hinders flexible
task scheduling, being susceptible to data skew.

Based on our evaluation and experience, the rule-of-thumb
choice for a system is suggested in Figure 5.

Are the keys the same across iterations AND
Are the intermediate data joined with static data?

Not a sweet spot of 
the new systems

Can main memory hold static data?

Is the shuffle I/O high? Is the data set skewed?

Yes

No

Yes

No

Spark Twister HaLoop iMapReduce

NoYes No

Yes

Memory-Based 
Engines

Disk-Based 
Engines

Figure 5: Choice of the systems depending on the environments.

5. CONCLUSION
We conducted extensive experiments on the five MapReduce-

like systems, Hadoop, HaLoop, iMapReduce, Twister, and Spark,
by running four different algorithms against various real-world and
synthetic data sets. We ran these systems on 50 Amazon EC2 x-
large instances (200 cores), measuring elapsed time, remote disk
I/O, and reduce shuffle I/O, in order to capture their performance
characteristics. The new systems were shown to improve the per-
formance of iterative algorithms mainly by reducing the disk I/O
for static data. We found that Spark in general achieved the best
performance when the operations were executed entirely in main
memory. Through our evaluation and interpretation, we discovered
the primary factors that impact on the performance: invariability of
the keys of variable data, availability of main memory especially
in memory-based engines, amount of variable (intermediate) data
transferred together with network utilization, and flexibility of task
scheduling. The sweet spots of each system were identified using
these factors. Since the resources (CPU cores and main memory)
of a cluster node become more powerful, we expect that memory-
based engines such as Spark will become more prevalent in the near

future. Automatic tuning of granularity of tasks, graceful transition
between memory and disk, and optimization of common operations
are yet to be solved and still have room for improvement.
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