
TRAP: Two-level Regularized Autoencoder-based Embedding
for Power-law Distributed Data

Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee
∗

Graduate School of Knowledge Service Engineering, KAIST

{dongminpark,songhwanjun,minseokkim,jaegil}@kaist.ac.kr

ABSTRACT
Recently, autoencoder (AE)-based embedding approaches have

achieved state-of-the-art performance in many tasks, especially

in top-k recommendation with user embedding or node classifica-

tion with node embedding. However, we find that many real-world

data follow the power-law distribution with respect to the data

object sparsity. When learning AE-based embeddings of these data,

dense inputs move away from sparse inputs in an embedding space

even when they are highly correlated. This phenomenon, which we

call polarization, obviously distorts the embedding. In this paper, we

propose TRAP that leverages two-level regularizers to effectively

alleviate the polarization problem. Themacroscopic regularizer gen-
erally prevents dense input objects from being distant from other

sparse input objects, and the microscopic regularizer individually
attracts each object to correlated neighbor objects rather than un-

correlated ones. Importantly, TRAP is a meta-algorithm that can be

easily coupled with existing AE-based embedding methods with a

simple modification. In extensive experiments on two representa-

tive embedding tasks using six-real world datasets, TRAP boosted

the performance of the state-of-the-art algorithms by up to 31.53%

and 94.99% respectively.

CCS CONCEPTS
• Computing methodologies → Regularization; Neural net-
works; • Information systems→ Data mining.

KEYWORDS
Power-law Distribution, Recommender System, Graph Embedding,

Autoencoder

ACM Reference Format:
Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee. 2020. TRAP: Two-

level Regularized Autoencoder-based Embedding for Power-law Distributed

Data. In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24,
2020, Taipei, Taiwan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3366423.3380233

1 INTRODUCTION
With the rapid growth of online services including e-commerce and

social media, a variety of high-dimensional datasets have become

available, e.g., user-item transaction matrices and social relation

∗
Jae-Gil Lee is the corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380233

matrices [17]. However, owing to their extremely high dimension-

ality, most of existing machine learning algorithms have been re-

ported to suffer from high computational and space complexity [1].

Thus, many researchers have employed a data embedding tech-

nique, which maps high-dimensional data to lower-dimensional

data, in order to directly apply the existing algorithms on the lower-

dimensional data [8, 15, 29].

Recently, numerous autoencoder (AE)-based embedding ap-

proaches have been studied actively, and they are empirically

proven to achieve not only low-dimensional but also highly infor-

mative embeddings because of the strong representation power of

neural networks. Hence, it becomes feasible to capture a data man-

ifold smoothly even in the high-dimensional data [4]. This family

of AE-based approaches is well known to reach the state-of-the-art

performance in numerous machine learning tasks, especially in

top-k recommendation tasks with user embedding [13, 29, 30] or

link prediction and node classification (or clustering) tasks with

node embedding [4, 5, 8].

Despite their great success, we claim that a skewed sparsity

distribution of input vectors (e.g., movie ratings) in real-world

data severely hurts the performance of embedding methods.

Specifically, as shown in Figure 1a, the sparsity distribution

of input vectors is strongly skewed toward being sparse. This

observation is natural in considering that various phenomena

in the real world approximately follow a power law over a wide

range of magnitudes [3]. However, as shown in Figure 1b, this

skewed distribution entails a polarization problem that causes a

dense input to move away from sparse inputs in an embedding

space (See Section 3.2 for the details), even when the two inputs are

highly correlated. Evidently, these polarized latent representations

degrade the performance of the embedding methods.

Intuitively, the deleterious effect of polarization is very common

in real-world scenarios. Let’s consider a recommendation task

where its data follows the power-law distribution [28]. The goal

of the task is to suggest unexperienced but interesting items to

users based on their estimated preference under the assumption

that people’s tastes are highly correlated with each other. However,

the polarization problem hinders dense inputs from being closely

located to sparse inputs in the latent space regardless of the cor-

relation between them, and thus, the existing embedding methods

may inaccurately estimate the users’ preference. This limitation

calls for a new approach to alleviate the polarization problem.

To handle the polarization problem, we propose a novel meta-
algorithm called TRAP (Two-level Regularized Autoencoder based
embedding for Power-law distributed data) that can be easily com-

bined with any existing autoencoder-based embedding methods

leveraging two-level regularizers. (i) The “macroscopic regularizer”

generally prevents dense input objects from being distant from

1615

https://doi.org/10.1145/3366423.3380233
https://doi.org/10.1145/3366423.3380233
https://doi.org/10.1145/3366423.3380233

WWW ’20, April 20–24, 2020, Taipei, Taiwan Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee

0 200 400 600 800
0

400

800

1200

1600

of ratings

N
um

be
r o

f u
se

rs

sparsity distribution
of input vectors

(a) Sparsity Distribution.

0 200 400 600
0

20

40

60

80

100

120

of ratings

D
is

tf
ro

m
 th

e
C

en
te

r

(Sparse)
30% of the total

(Dense)

(b) Polarization.

center

Embedding Space
sparse dense

(c) Macroscopic Regularizer.

center

Embedding Space
group1 group2

(d) Microscopic Regularizer.

Figure 1: Key idea of TRAP: (a) shows the sparsity distributions of the number of movie ratings per user in the MovieLens-1M
dataset. The distribution was severely skewed in the sparse direction (i.e., small number of ratings) and tended to follow the
power-law distribution because the number of users drastically decreased in the dense direction (i.e., large number of ratings);
(b) shows a polarization problem when using the AutoRec embedding method on MovieLens-1M, where each point indicates a
user. In the embedding space, the users with dense ratings tended to be far from the center whereas those with sparse ratings
tended to be near the center; (c) and (d) show the effect of themacroscopic regularizer andmicroscopic regularzier, respectively.

other sparse input objects, and (ii) the “microscopic regularizer”

individually enhances each object’s freedom of movement to place

it closely to correlated objects rather than uncorrelated ones.

In detail, as shown in Figure 1c, the macroscopic regularizer adds

a regularization term in the loss function to pull all data objects to

a specific center (e.g., origin) such that they become closer to each

other. Here, the dense input objects located far from the center

move toward the center more aggressively whereas the sparse ones

less aggressively. On the other hand, as shown in Figure 1d, the

microscopic regularizer introduces a new object-wise parameter

to make each object close to its correlated objects, not simply

reducing the overall distance between all data objects. Notably, our

proposed merger of the two-level regularizers indeed overcomes

the polarization problem, thereby significantly improving the

performance of popular embedding tasks. Our main contributions

are summarized as follows:

• We clarify that the power-law distribution of input vectors’ spar-

sity in real-world data causes the polarization problem, which

severely hurts the performance of embedding methods. To the

best of our knowledge, our work is the first to shed light on the

polarization problem.

• We propose a novel approach TRAP equipped with two-level reg-

ularizers to alleviate the polarization problem. Most importantly,

TRAP is ameta-algorithm that can be easily coupled with existing

AE-based embedding methods by simply adding a regularization

term and a new parameter.

• We conduct extensive experiments on two representative embed-

ding tasks using six real-world datasets. Combining TRAP with

widely-used embedding methods, we significantly boosted the

performance by up to 31.53% and 94.99% in user-item and graph

embedding tasks, respectively.

2 RELATEDWORK
Numerous studies have been conducted to learn the low-

dimensional embeddings from sparse data. Here, we briefly review

the studies for two representative tasks: (i) user embedding in

recommender systems and (ii) node embedding in graph mining.

Note that most of the existing work has overlooked the polarization

problem resulted from the inherent nature that the density of

real-world inputs follows the power-law distribution. As far as

we know, TRAP is the first method to overcome the polarization
problem in the embedding task.

2.1 User-Item Embedding
Learning a low-dimensional embedding of users and items has been

reported to make a considerable performance improvement in the

top-k recommendation task [13, 30]. A popular approach is matrix
factorization (MF) [12] that decomposes the sparse user-item rating

matrix into the product of two lower-dimensional but dense matri-

ces based on the singular value decomposition (SVD). To further

improve the typical MF, Koren [11] integrated the neighbor-based

method, and Mnih and Salakhutdinov [16] employed the probabilis-

tic regularization technique. Nevertheless, their performances are

limited by the linearity of the SVD [13].

By virtue of the non-linearity in neural networks, many recent

researchers have attempted to design AE-based embedding ap-

proaches [29]. AutoRec [21] reconstructs only the observed ratings

in a sparse user-item rating matrix based on the point-wise loss.

CDAE [27] adopts the denoising AE [25] to force the hidden layer

to discover more robust embeddings from the sparse input. Mult-
VAE [13] adopts the variational AE (VAE) [10] and uses a multino-

mial log-likelihood loss, which is known to suit the top-k recom-

mendation. JCA [30] introduces a joint learning paradigm with

their pair-wise loss such that the AE model captures the correlation

between users and items.

2.2 Node Embedding
Mapping nodes in a graph to the low-dimensional embeddings is

another essential problem in numerous tasks such as link prediction

and node classification. Many research efforts have been devoted to

encoding the nodes in the embedding space.DeepWalk [19] feeds the
truncated random walks of the nodes into the SkipGram model [15]

to preserve the high-order proximity between the nodes. As op-

posed to DeepWalk, LINE [24] focuses on preserving the first (and

second) order proximity. Node2Vec [7] introduces both breadth-first

and depth-first node sampling methods to construct the context

of nodes. Struc2Vec [20] generates a series of the weighted auxil-

iary graphs and then uses the biased random walks as an input of

Node2Vec. However, their general principle based on SkipGram fails

to capture the high non-linearity in the graph [5].

1616

TRAP: Two-level Regularized Autoencoder-based Embedding
for Power-law Distributed Data WWW ’20, April 20–24, 2020, Taipei, Taiwan

Similar to the user-item embedding, recent studies [2, 4, 5, 26]

have proposed AE-based embedding approaches to capture the

non-linearity in the graph. SDNE [26] exploits both local and global

graph structures to generate the node embeddings based on the

first-order and second-order proximity. DANE [4] maintains an

additional AE to reconstruct the sparse attribute of each node. Pro-
GAN [5] exploits more complex underlying proximities between

the nodes generated by a generative adversarial network (GAN) [6].

3 POLARIZATION PROBLEM
3.1 Preliminary
Let X = {X1,X2, · · · ,XM } ∈ RM×N

be a matrix of M ob-

jects (i.e., row vectors in X), where the i-th object is Xi = (xi,1,
xi,2, · · · ,xi,N) with N properties (i.e., values in a vector Xi). Then,
a low-dimensional embedding is formally defined by Definition 3.1.

Definition 3.1. A low-dimensional embedding is learning a func-

tion f : X→ X′, whereX ∈ RM×N
is an input matrix,X′ ∈ RM×N ′

is an embedding matrix, and N > N ′
. □

For the notion of sparse embedding, the sparsity of the i-th object
Xi is defined by Definition 3.2, where [·] is the Iverson bracket

1
.

Definition 3.2. The sparsity of the i-th object Xi is formulated as

in Eq. (1).

S(Xi) =

∑
xi, j ∈Xi [xi, j = 0]

dim(Xi)
□ (1)

Then, we regard that the matrix X is a sparse binary matrix by

Definition 3.3, which is a common problem setting in the recent

literature for both recommender systems and graph embedding [4,

13, 21, 26, 27, 30].

Definition 3.3. A matrix X ∈ RM×N
is a sparse binary matrix if

Eq. (2) holds.

(∀xi, j ∈ X : xi, j ∈ {0, 1}) ∧ (1/M
M∑
i=1

S(Xi) ≈ 1) □ (2)

3.2 Theoretical Analysis on Polarization
Let X = (x1,x2, · · · ,xN) be a random vector where each element

x j ∈ X is a binary random variable such that P(x j = 1) = pX and

P(x j = 0) = (1−pX). Besides, let f (Xs) and f (Xd) be the embedding

vectors of two random vectors Xs and Xd with different sparsity

such that E[S(Xs)] > E[S(Xd)]. Then, the notion of polarization is

formalized as Definition 3.4, in which the total variance [18, 23] in
Definition 3.5 is used as a measure of the dispersion from a center

E[f (X)] to a given embedding vector f (X). That is, the higher the

total variance is, the more f (X) is disperse from the center.

Definition 3.4. Polarization is a phenomenon that the embedding

vector of dense inputs tends to be located farther from the center

than that of sparse inputs, which is proven by Theorem 3.9. □

Definition 3.5. The total variance of an embedding vector f (X)

is the sum of all eigenvalues λ of the cov(f (X)) as in Eq. (3).

totvar(f (X)) =

N ′∑
i=1

λi = tr (cov(f (X))) □ (3)

1
The Iverson bracket [P] returns 1 if P is true; 0 otherwise.

We theoretically prove the existence of polarization, assuming

more realistic network architectures step by step: a 1-layer linear

AE (Lemma 3.6), a 1-layer non-linear AE (Lemma 3.7), and a multi-
layer non-linear AE (Lemma 3.8).

Lemma 3.6. Let f (X) =WX + b be a 1-layer AE with N ′ hidden
units and an identity activation function, whereW ∈ RN

′×N and
b ∈ RN

′

. Then, Eq. (4) holds.

E[S(Xs)] > E[S(Xd)] → totvar(f (Xs)) < totvar(f (Xd)) (4)

Proof. By Definition 3.5, the total variance of the embedding

vector f (X) is derived by Eq. (5).

totvar(f (X)) = tr (cov(WX + b)) = tr (cov(WX))

= tr (W cov(X)WT) = tr (cov(X)WTW)
(5)

Since each element x j ∈ X is a binary random variable, x j follows a
Bernoulli distributionB(1,pX), wherepX = (1−E[S(X)]). Then, by

E[S(Xs)] > E[S(Xd)], 0 < pXs < pXd < 1/2, and both (cov(Xd) −

cov(Xs)) and WTW are positive semidefinite. Therefore, Eq. (6)

holds because tr (AB) > 0 if A and B are positive semidefinite. This

concludes the proof.

totvar(f (Xd)) − totvar(f (Xs))

= tr (cov(Xd)W
TW) − tr (cov(Xs)W

TW)

= tr ((cov(Xd) − cov(Xs))W
TW) > 0 □

(6)

Lemma 3.7. Let ReLU (Z) = max(0,Z) be a rectified linear
unit (ReLU) activation function, where Z = f (X) is a 1-layer em-
bedding. Then, Eq. (7) holds.

totvar(Zs) < totvar(Zd) →

totvar(ReLU (Zs)) < totvar(ReLU (Zd))
(7)

Proof. Let’s assume that Zs and Zd follow the multivariate nor-

mal distribution, where E[Zs] = E[Zd] and covi,i (Zs) < covi,i (Zd)
for all i-th diagonal elements of the covariance matrices.

(i) E(Zs) ≥ 0: Let Y be min(Z , 0), and U be Z if Z ≥ 2E[Zs],
E[Zs] if 2E[Zs] > Z ≥ 0, andY otherwise. Then, covi,i (ReLU (Z)) =
covi,i (Z)−covi,i (Y). Since E[U] = E[Zs] = E[Zd], by the definition
of the covariance, Eq. (8) holds.

covi,i (ReLU (Zd)) − covi,i (ReLU (Zs))

= covi,i (Zd) − covi,i (Zs) − (covi,i (Yd) − covi,i (Ys))

> covi,i (Zd) − covi,i (Zs) − (covi,i (Ud) − covi,i (Us)) > 0

(8)

(ii) E(Zs) < 0: The proof is similar to the above case.

Therefore, covi,i (ReLU (Zd)) > covi,i (ReLU (Zs)) for every i-th
diagonal element. This concludes the proof. □

Lemma 3.8. Let’s consider f ′(Z ′) = W ′Z ′ + b ′, where W ′ ∈

RN
′×N ′′

, b ′ ∈ RN
′′

, and Z ′ is the embedding passing through
ReLU (·) in the previous layer. Then, Eq. (9) holds.

∀i, covi,i (Z ′
s) < covi,i (Z

′
d) →

totvar(f ′(Z ′
s)) < totvar(f ′(Z ′

d))
(9)

Proof. By Eq. (6) and the condition of Eq. (9), Eq. (10) holds.

totvar(f ′(Z ′
d)) − totvar(f ′(Z ′

s))

= tr ((cov(Z ′
d) − cov(Z ′

s))W
′TW ′) > 0 □

(10)

1617

WWW ’20, April 20–24, 2020, Taipei, Taiwan Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee

2

3

4

5

6

7

0 200 400 600
of ratings

D
is

tf
ro

m
 th

e
C

en
te

r

(Sparse) (Dense)

Figure 2: Polarization problem when using AutoRec with
two layers on the MovieLens-1M dataset.

Finally, the overall proof of the polarization on a multi-layer

non-linear AE is concluded by Theorem 3.9.

Theorem 3.9. Let f (X) be a multi-layer AE with the ReLU acti-
vation function. Then, totvar(f (Xd)) > totvar(f (Xs)).

Proof. By the mathematical induction in which Lemma 3.6 is

the base step and Lemmas 3.7 and 3.8 are the consecutive inductive

steps, the polarization still holds. □

Figure 2 shows the distance from the center to the embedding

vector according to the number of a user’s ratings in the MovieLens-

1M dataset when usingAutoRecwith two layers. Similar to the result

of AutoRec with one layer in Figure 1b, the users with dense ratings

tended to be located farther than those with sparse ratings. That is,

we empirically confirm Theorem 3.9.

4 TWO REGULARIZERS OF TRAP
The key idea of TRAP is to constrain the distance between sparse

and dense objects so that they are not too far from each other,

which is achieved by two simple and effective regularizers: (i)
the macroscopic regularizer that generally restricts dense objects

being away from sparse objects, and (ii) the microscopic regularizer
that individually adjusts each object’s movement to neighbor with

correlated objects.

4.1 Macroscopic Regularizer
To handle the polarization problem, an intuitive method is to con-

strict the dispersion of data objects by pulling them into the center

of their correlated group in the embedding space. However, this

process is not straightforward because the clustering task may in-

duce several difficulties including high computation cost and low

quality of the result [22].

In this regard, we introduce amacroscopic regularizer that simply

pulls all objects into the origin (i.e., zero vector) in the embedding

space. Specifically, as shown in Eq. (11), this regularizer adds the

total L2-norm of all embeddings z as a penalty term with its scal-

ing hyperparameter η in the objective function, where AE
′
is any

existing AE-based method, L′
is its reconstruction loss function,

and L is the number of layers of the encoder in AE
′
.

L =

M∑
i=1

(
L′(Xi ,AE

′(Xi)) + η
L∑
l=1

∥ z
[l]
i ∥2

2

)
(11)

Since the dense objects which tend to be far from the origin

have a higher l2-norm than the sparse objects which tend to be

close from the origin, the dense ones are pulled strongly whereas

Non-shared Parameter

⋯ ⋯

⋯ ⋯

O
bj

ec
t "

O
bj

ec
t #

Shared Parameter

Shared Parameter

Figure 3: Structure of TRAP . The red (or blue) neuronmeans
a “non-shared” object-wise scaling parameter which is as-
signed to each object.

the sparse ones are pulled weakly. Consequently, the macroscopic

regularizer generally restricts the dense objects being distant from

other sparse objects.

4.2 Microscopic Regularizer
One limitation of the macroscopic regularizer lies in that it is ap-

plied invariably to the input data as parameter update is shared by

all objects, while each object is not equally distant from the rest

correlated objects in the embedding space. To achieve the goal of

embedding which is to locate correlated objects nearby, we addition-

ally introduce a microscopic regularizer that adjusts each object’s

sparsity by adding non-shared parameters ν called object-wise scal-
ing parameters, as shown in Figure 3. More specifically, as shown

in Eq. (12), the object-wise scaling parameter ν li of the object Xi is
multiplied with the output of neurons in the l-th layer before the

non-liner activation σ ,2 where ◦ is the element-wise product.

z
[l]
i =

{
σ ((W [l]Xi + b

[l]) ◦ ν
[l]
i), i f l = 1

σ ((W [l]z
[l−1]
i + b[l]) ◦ ν

[l]
i), otherwise

(12)

That is, when applied with the macroscopic regularizer, the mi-

croscopic regularizer provides additional capacity to let an input ob-

ject become closer to its correlated objects in an object-wise manner.

4.3 Quick Analysis on TRAP
We contend that the polarization problem in Definition 3.4 can

be alleviated by TRAP based on the following explanation. Let’s

recall Lemma 3.6, but the AE function is now defined as f ′(X) =

(Wx +b) ◦ν with the ν of the microscopic regularizer. Then, Eq. (6)

is changed to Eq. (13).

totvar(f ′(Xd)) − totvar(f ′(Xs))

= tr (cov(Xd)(W ◦νd)
T(W ◦νd)) − tr (cov(Xs)(W ◦νs)

T(W ◦νs))
(13)

In this case, note that Lemma 3.6 does not always hold because

the total variance of the embedding vector f ′(Xd) can be rather

smaller than that of the embedding vector f ′(Xs) if νd of the dense

object Xd is much smaller than νs of the sparse object Xs . With the

2
We used the tanh function as the activation in all experiments.

1618

TRAP: Two-level Regularized Autoencoder-based Embedding
for Power-law Distributed Data WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 1: Summary statistics of the user feedback datasets.

Dataset # Users # Items # Feedbacks Sparsity Skewness

ML1M 6,027 3,062 574,026 0.969 2.888

Yelp 12,705 9,245 318,314 0.997 6.310

Video 19,056 9,073 184,609 0.999 22.073

macroscopic regularizer, νd was generally much smaller than νs
according to our ablation study in Section 5.1.6. Therefore, TRAP
can indeed overcome the polarization problem.

5 EXPERIMENTS
To validate the superiority of TRAP , we performed extensive ex-

periments on two independent tasks: (i) user-item embedding and

(ii) node embedding. TRAP as well as the other algorithms were

implemented using TensorFlow 1.8.0 and executed using a single

NVIDIA Titan Volta GPU. For reproducibility, we provide the source

code at https://github.com/kaist-dmlab/TRAP.

5.1 User-Item Embedding
5.1.1 Datasets. We performed a user-item embedding task on

three user feedback datasets: MovieLens-1M (ML1M)
3
, Yelp

4
, and

VideoGame (Video)
5
. Here, the rating or purchase history of the

user i for the item j corresponds to the value of xi, j ∈ X. For the
embedding task, we converted all users’ ratings or histories into

binary values ∈ {0, 1} following the problem setting in Section 3.1,

where 0 is negative feedback and 1 is positive feedback. Specifically,

in ML1M and Yelp, a user-item rating was converted to 1 if it is

greater than or equal to 4 and to 0 otherwise. In VideoGame, all

items purchased less than 5 times and all users who purchased less

than 5 items were excluded by the pre-processing step, and then

a user-item history was binarized to 1 if the user purchased the

item and to 0 otherwise. In addition, for each dataset, we randomly

selected 70% of all user-item values as the training set, and 10%

of them as the validation set, and the rest 20% of them as the test

set. Table 1 summarizes the statistics of each dataset. Note that our

sparsity assumption in Definition 3.3 is likely to hold in real-world

user feedback data as the sparsity of data is almost 1 in Table 1.

Also, the positive skewness
6
in Table 1 implies that the sparsity of

each object approximately follows the power law.

5.1.2 Algorithms.

• MF [12]: A traditional matrix factorization model with mean

square error (MSE) loss and alternating least squares (ALS) for

the optimization.

• NCF [9]: A combination model of an extended neural network-

based MF model and a multi-layer perceptron (MLP) model.

• AutoRec [21]: A 1-layer AE model using user rating vectors as

inputs. Because the loss of AutoRec is devised for the explicit

feedback, we converted it into the pairwise loss in JCA, which
is proven to be more effective in top-k rocommendation with

implicit feedback.

3
http://files.grouplens.org/datasets/movielens/ml-1m.zip

4
http://www.yelp.com/dataset/challenge

5
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_

Games.csv

6
The skewness was measured by Pearson’s moment coefficient of skewness.

• CDAE [27]: A 1-layer denoising AE model. We chose the hinge-

based pairwise loss introduced in CDAE.
• MultiVAE [13]: A multi-layer VAE model. We used the multino-

mial probabilistic loss presented in MultiVAE.
• JCA [30]: A joint model of user-based AutoRec and item-based

AutoRec that fully takes advantage of user-item correlation. We

used the pairwise loss proposed in JCA.
We combined TRAP with AutoRec, CDAE, MultiVAE, and JCA,

each of which is denoted as TRAPAuto , TRAPCDAE , TRAPMulti ,

and TRAPJCA, respectively. We validated the performance improve-

ment of the combined ones compared with the original ones.

5.1.3 Experiment Setting. The hyperparameters of all compared

algorithms were favorably set to be the best values reported in the

original papers [9, 12, 13, 21, 27, 30]. Regarding TRAP , the weight η
for the macroscopic regularizer was set to be the best value found

by a grid η ∈ [3×10
−3, 1×10

−4, 3×10
−3, 1×10

−3, 1×10
−2], and the

object-wise weight ν for the microscopic regularizer was initialized

as the values randomly drawn from a uniform distribution U(0, 1).

As for the training configuration, we used an Adam optimizer, a

mini-batch size of 1500, and a constant learning rate of 0.003.

5.1.4 Evaluation Metrics. To measure the performance of the user-

item embedding, we performed a top-k recommendation task,

which is a popular way to validate the quality of obtained user

embeddings [29]. The top-k recommendation is to suggest k un-

seen items to each user. Let I∗i and
ˆIi (k) be the ground truth and k

recommended items for the i-th user, where |I∗i | ≥ k . Then, given
M users and N items, the recommendation performance is typically

measured by the following four metrics:

Precision@k =
1

M

M∑
i=1

|I∗i ∩
ˆIi (k)|

k
; (14)

Recall@k =
1

M

M∑
i=1

|I∗i ∩
ˆIi (k)|

|I∗i |
; (15)

F1-score@k =
(2 · Precision@k · Recall@k)

(Precision@k + Recall@k)
; and (16)

NDCG@k =
1

M

M∑
i=1

1

IDCG(|I∗i |)

∑
j+∈I∗i

1

loд2(rank(j+) + 2)
,

where IDCG(|I∗i |) =

|I∗i |∑
l=1

1

loд2(l + 2))
.

(17)

In support of reliable evaluation, we repeated every task five
times and reported the average of each metric.

5.1.5 Performance Comparison. Table 2 shows F1-score@k and

NDCG@k on three datasets with varying k . Overall, the perfor-
mance of all existing AE-based embedding methods was signifi-
cantly improved by incorporating TRAP into them regardless of

k values. Quantitatively, compared with the original method, F1-
score@k was improved by up to 20.38% in ML1M, 24.16% in Yelp,

and 31.53% in VideoGame;NDCG@k was improved by up to 21.42%

in ML1M, 21.51% in Yelp, and 25.76% in VideoGame. In particu-

lar, the best performance improvement was mostly achieved with

CDAE. However, when combined with MultiVAE, the improvement

1619

https://github.com/kaist-dmlab/TRAP
http://files.grouplens.org/datasets/movielens/ml-1m.zip
http://www.yelp.com/dataset/challenge
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_Games.csv
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_Games.csv

WWW ’20, April 20–24, 2020, Taipei, Taiwan Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee

Table 2: F1-score@k andNDCG@k of all user-item embedding algorithms on three datasets (the best results aremarked in bold).

Metrics F1-score NDCG

Datasets ML1M Yelp VideoGame ML1M Yelp VideoGame

Models @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

MF .0469 .1418 .1801 .0140 .0318 .0343 .0214 .0269 .0253 .2778 .2510 .2472 .0351 .0372 .0477 .0252 .0425 .0510

NCF .0511 .1525 .1887 .0155 .0337 .0354 .0223 .0287 .0266 .2955 .2727 .2709 .0378 .0390 .0496 .0279 .0444 .0561

AutoRec .0499 .1486 .1956 .0167 .0334 .0357 .0192 .0271 .0248 .3197 .2813 .2735 .0394 .0408 .0493 .0242 .0411 .0524

TRAPAuto .0568 .1644 .2051 .0185 .0366 .0396 .0253 .0316 .0284 .3660 .3126 .2950 .0413 .0449 .0551 .0305 .0504 .0638

%improve 13.83 10.61 4.85 10.89 9.55 11.14 31.53 16.80 14.31 14.48 11.14 7.87 4.79 10.00 11.63 25.76 22.48 21.67

CDAE .0475 .1431 .1873 .0155 .0323 .0352 .0233 .0291 .0259 .3114 .2721 .2634 .0366 .0396 .0482 .0290 .0457 .0571

TRAPCDAE .0572 .1647 .2106 .0193 .0373 .0402 .0267 .0330 .0293 .3781 .3182 .3025 .0445 .0458 .0561 .0328 .0527 .0661

%improve 20.38 15.11 12.42 24.16 15.50 14.18 14.76 13.32 13.24 21.42 16.93 14.82 21.51 15.72 16.44 13.22 15.13 15.81

MultiVAE .0526 .1483 .1857 .0168 .0347 .0376 .0218 .0266 .0241 .3330 .2893 .2726 .0399 .0424 .0518 .0269 .0425 .0539

TRAPMulti .0538 .1496 .1888 .0171 .0367 .0391 .0231 .0291 .0259 .3393 .2919 .2756 .0420 .0451 .0543 .0296 .0462 .0579

%improve 2.35 0.91 1.66 1.53 5.93 3.95 6.22 9.20 7.60 1.89 0.91 1.12 5.33 6.36 4.80 6.24 8.56 7.54

JCA .0563 .1589 .2018 .0182 .0358 .0385 .0252 .0334 .0301 .3592 .3044 .2892 .0405 .0440 .0537 .0307 .0526 .0667

TRAPJCA .0599 .1665 .2098 .0210 .0384 .0401 .0277 .0355 .0312 .3605 .3109 .2973 .0464 .0477 .0573 .0338 .0562 .0702
%improve 6.28 4.81 3.96 15.82 7.20 4.30 9.97 6.26 3.51 0.37 2.11 2.80 14.56 8.39 6.60 10.26 6.82 5.19

0

0.1

0.2

0.3

0.4

@5@1 @10

pr
ec
is
io
n@
k

(a) ML1M.

0
0.01
0.02
0.03
0.04
0.05

@5@1 @10

(b) Yelp.

MF
NCF
AutoRec
AutoRec*
CDAE
CDAE*
MultiVAE
MultiVAE*
JCA
JCA*

MF
NCF
AutoRec
TRAP
CDAE
TRAP
MultiVAE
TRAP
JCA
TRAP

Auto

CDAE

Multi

JCA

0

0.01

0.02

0.03

0.04

@5@1 @10

(c) VideoGame.

Figure 4: Precision@k of all user-item embedding algorithms on three datasets.

0
0.05

0.1

0.15

0.2

@5@1 @10

re
ca
ll@
k

(a) ML1M.

0
0.02

0.04
0.06

0.08

@5@1 @10

(b) Yelp.

MF
NCF
AutoRec
AutoRec*
CDAE
CDAE*
MultiVAE
MultiVAE*
JCA
JCA*

MF
NCF
AutoRec
TRAP
CDAE
TRAP
MultiVAE
TRAP
JCA
TRAP

0

0.05

0.1

0.15

@5@1 @10

Auto

CDAE

Multi

JCA

(c) VideoGame.

Figure 5: Recall@k of all user-item embedding algorithms on three datasets.

was relatively low because the effect of our macroscopic regular-

izer overlaps with that of the Gaussian prior N (0, I) constraint to
the embeddings in the original MultiVAE model. Nevertheless, the

synergistic effect with our microscopic regularizer is still effective.

Meanwhile, the best performance on the two metrics was achieved

by either TRAPCDAE or TRAPJCA in all datasets. Figures 4 and 5

show precision@k and recall@k of all algorithms on three datasets

with varying k . The performance trends with them were similar

to those with F1-score@k and NDCG@k . Most importantly, this

consistent dominance of the combined methods empirically proves

that mitigating the polarization problem significantly improves the

performance of the embedding task.

5.1.6 Ablation Study. To individually examine the effect of the

macroscopic and microscopic regularizers, we conducted additional

ablation experiments on two methods, AutoRec and CDAE. We first

Table 3: Ablation study for the two regularizers ofTRAP (the
best results are marked in bold).

ML1M Yelp VideoGame

Models @1 @5 @10 @1 @5 @10 @1 @5 @10

AutoRec .0499 .1486 .1956 .0167 .0334 .0357 .0192 .0271 .0248

TRAPmacro
Auto .0566 .1585 .2009 .0173 .0345 .0378 .0223 .0292 .0264

TRAPmicro
Auto .0563 .1640 .2048 .0177 .0359 .0382 .0241 .0310 .0280

TRAPAuto .0568 .1644 .2051 .0185 .0366 .0396 .0253 .0316 .0284
CDAE .0475 .1431 .1873 .0155 .0323 .0352 .0233 .0291 .0259

TRAPmacro
CDAE .0561 .1533 .1929 .0160 .0333 .0354 .0233 .0306 .0273

TRAPmicro
CDAE .0564 .1561 .2056 .0161 .0338 .0376 .0240 .0313 .0288

TRAPCDAE .0572 .1647 .2106 .0193 .0373 .0402 .0267 .0330 .0293

show the performance of each method’s vanilla version and then

enable the components of TRAP to solely evaluate the effective-

ness of each component. We denote the versions combined with

1620

TRAP: Two-level Regularized Autoencoder-based Embedding
for Power-law Distributed Data WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 4: Performance comparison of TRAPmacro with two
normalizationmethods (the best results aremarked in bold).

ML1M Yelp VideoGame

Models @1 @5 @10 @1 @5 @10 @1 @5 @10

AutoRec .0499 .1486 .1956 .0167 .0334 .0357 .0192 .0271 .0248

Sphere-norm .0405 .1115 .1431 .0051 .0101 .0111 .0044 .0055 .0057

L1-norm .0512 .1508 .1936 .0148 .0332 .0360 .0190 .0260 .0242

TRAPmacro
Auto .0566 .1585 .2009 .0173 .0345 .0378 .0223 .0292 .0264

CDAE .0475 .1431 .1873 .0155 .0323 .0352 .0233 .0291 .0259

Sphere-norm .0343 .0992 .1313 .0064 .0159 .0130 .0093 .0193 .0219

L1-norm .0545 .1530 .1918 .0156 .0330 .0353 .0222 .0300 .0264

TRAPmacro
CDAE .0561 .1533 .1929 .0160 .0333 .0354 .0233 .0306 .0273

0 200 400 600
of ratings

Va
lu

es
of

 ! "

(Sparse) (Dense)

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6: Distribution of the object-wise scaling parameter
νi according to the number of movie ratings of each user i
when training TRAPAuto on the ML1M dataset.

both regularizers as TRAPAuto and TRAPCDAE , respectively. Com-

bination with either the macroscopic or microscopic regularizer

is additionally indicated by the superscript, either macro or mi-
cro, on the name of each combined method. Table 3 reports the

F1-score@k evaluation results of TRAPAuto and TRAPCDAE . For
all three datasets and k values, each regularizer leads to significant

performance improvement. Moreover, the best performance im-

provement is achieved when both regularizers are combined. This

result indicates that our proposed two-level regularizers have the

synergistic effect to alleviate the polarization problem.

5.1.7 Macroscopic Regularizer vs. Other Normalizations. To validate
the advantage of our macroscopic regularizer (i.e., l2-normalization)
over other normalization methods, we conducted additional experi-

ments with l1-normalization and hypersphere-normalization which

force all embeddings to be located on the surface of a unit hyper-

sphere. Table 4 shows F1-score@k of three normalization methods

combined with AutoRec and CDAE on three datasets. Overall, our

macroscopic regularizer always showed the highest improvement

for both AutoRec and CDAE. The l1-normalization improved the

performance, but its effect was weaker than that of our macro-

scopic regularizer; the hypersphere-normalization was shown to

even degrade the performance.

5.1.8 Effect of Microscopic Regularizer. Furthermore, we plot the

distribution of the object-wise scaling parameter νi with respect

to the object’s input sparsity (i.e., the number of movie ratings) on

ML1M, as shown in Figure 6. As an input object became denser,

the parameter value decreased. By virtue of our design principle

in Section 4.2, a large νi of the sparse objects forces them to move

away from the origin, while a small νi of the dense objects forces

(a) AutoRec. (b) TRAPAuto .

Figure 7: TSNE visualizations of the learned embeddings
fromAutoRec andTRAPAuto on theML1Mdataset. The color
shows thenormalized sparsity of each data object, where yel-
low indicates being dense and navy blue being sparse.

Table 5: Summary statistics of the graph datasets.

Dataset # Nodes # Edges # Classes Attribute Sparsity Skewness

Cora 2,708 5,429 7 O 0.999 15.271

Cite 3,312 4,732 6 O 0.999 9.989

Blog 10,312 333,983 37 X 0.999 9.823

them to stay close to the origin. Therefore, νi properly makes the

correlated objects close in the embedding space, regardless of their

input sparsity. Figure 7 represents the TSNE visualizations [14] over

the learned embeddings of AutoRec and TRAPAuto . The change

from Figure 7a to Figure 7b shows that polarization was effectively

resolved by combining with TRAP .

5.2 Node Embedding
5.2.1 Datasets. We performed a node embedding task on three
benchmark graph datasets: Cora

7
, Citeseer (Cite)

8
, and BlogCata-

log (Blog)
9
. Both Cora and Citeseer are the citation graphs between

academic papers, and BlogCatalog is the friendship graph between

social network users. Differently to the user feedback dataset, the

value of xi, j ∈ X was originally 1 if a relationship (e.g., citation and

friendship) from the node i to the other node j existed and 0 other-

wise. Besides, additional attribute information was available in the

Cora and Citeseer datasets, but not in the BlogCatalog dataset. The

remaining configuration for data preparation was the same as in

Section 5.1.1. Table 5 summarizes the statistics of each dataset. Our

assumptions are also likely to hold in the graph datasets because

the sparsity of data is again almost 1.

5.2.2 Algorithms.

• DeepWalk[19]: A basic random walks-based model that uses the

SkipGram embedding architecture.

• LINE [24]: A random walks-based model that focuses on pre-

serving the first-order and second-order proximities.

• Node2Vec [7]: A random walks-based model that uses breadth-

first and depth-first sampling instead of random walk proximity

sampling.

7
http://www.cs.umd.edu/~sen/lbc-proj/data/cora.tgz

8
http://www.cs.umd.edu/~sen/lbc-proj/data/citeseer.tgz

9
http://socialcomputing.asu.edu/datasets/BlogCatalog3

1621

http://www.cs.umd.edu/~sen/lbc-proj/data/cora.tgz
http://www.cs.umd.edu/~sen/lbc-proj/data/citeseer.tgz
http://socialcomputing.asu.edu/datasets/BlogCatalog3

WWW ’20, April 20–24, 2020, Taipei, Taiwan Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee

10%

M
ic

ro
-f

1

30% 50% 70% 90%
0.3

0.5

0.7

0.9

Train Rate

(a) Cora.

Train Rate

0.2

0.3

0.4

0.5

0.6

10% 30% 50% 70% 90%

(b) Citeseer.

DeepWalk
LINE
Node2Vec
Struc2Vec
SDNE
SDNE*

Train Rate

0.2

0.25

0.3

0.35

0.4

10% 30% 50% 70% 90%

DeepWalk
LINE
Node2vec
Struc2vec
SDNE
TRAPSDNE

(c) BlogCatalog.

Figure 8:Micro-f1 scores of six graph embedding algorithms on three datasets.

M
ac

ro
-f

1

Train Rate

0.2

0.4

0.6

0.8

10% 30% 50% 70% 90%

(a) Cora.

Train Rate

0.1

0.2

0.3

0.4

0.5

10% 30% 50% 70% 90%

(b) Citeseer.

DeepWalk
LINE
Node2Vec
Struc2Vec
SDNE
SDNE*

Train Rate

0.05

0.1

0.15

0.2

0.25

10% 30% 50% 70% 90%

DeepWalk
LINE
Node2vec
Struc2vec
SDNE
TRAPSDNE

(c) BlogCatalog.

Figure 9:Macro-f1 scores of six graph embedding algorithms on three datasets.

• Struc2Vec [20]: A model that uses the samples obtained by

biased random walks as the input of Node2Vec.
• SDNE [26]: A multi-layer AE model that exploits the first-order

and second-order proximities simultaneously.

• DANE [4]: A multi-layer AE model that aggregates additional

attribute information of each node.

Again, the two popular AE-based methods, SDNE and DANE,
were combined with TRAP , each of which is denoted as TRAPSDNE
and TRAPDANE respectively. We validated their performance im-

provement compared with the original ones.

5.2.3 Experiment Setting. The hyperparameters of all compared

algorithms were set to be the best values in the original pa-

pers [4, 7, 19, 20, 24, 26]. Regarding TRAP , the object-wise weight
ν was initialized as the values randomly drawn from a uniform

distribution U(0, 1), and the hyperparameter η was set to be the

best value found by a grid η ∈ [3 × 10
−5, 1 × 10

−5, 3 × 10
−4, 1 ×

10
−4, 1 × 10

−3]. As for the training configuration, except for the

mini-batch size, the configuration was the same as in Section 5.1.2.

The mini-batch size was set to be 500 because the graph data was

smaller than the user feedback data.

5.2.4 Evaluation. To measure the performance of the node embed-

ding, we performed two popular tasks as follows:

• Node Classification: This task aims to provide a high-quality

labeling for every node using only a few labeled nodes. Typically,

the learned embeddings are used as the input of a simple clas-

sifier, and its accuracy is commonly measured by both micro-f1
and macro-f1 scores. Refer to Wang et al. [26] for details. For the

classification task, we generated five test cases by splitting the

entire data into the training and test data with varying ratios

of the training data in {10%, 30%, 50%, 70%, 90%}. Then, we per-

formed the task using two simple classifiers: OneVsRestClassifier

and LogisticRegressor of scikit-learn
10
.

• Graph Reconstruction: This task validates how well the

learned embeddings preserve the structural information of the

graph. For the performance evaluation, we adopted awidely-used

metric precisionGR@k , which indicates how many k-nearest
neighbors retrieved using each learned embedding match the

true adjacent nodes in the graph. Given the adjacency ma-

trix X of M users (i.e., the binarized matrix in Section 5.2.1),

precisionGR@k is defined by Eq. (18), where (i, j) is a pair of

users. Since DANE uses additional attribute information unlike

other embedding methods, it was excluded from the overall com-

parison for fairness.

PrecisionGR@k =
1

k

∑
i, j

|{rank(i, j) < k} ∩ {X(i, j) = 1}| (18)

In support of reliable evaluation, we repeated every task five
times and reported the average of each metric.

5.2.5 Performance Comparison.

• Node Classification: Figures 8 and 9 show the micro-f1 and

macro-f1 scores of all algorithms on three datasets with vary-

ing ratios of training data. Overall, TRAPSDNE showed the best

performance at any ratio of training data in all datasets. Even

if SDNE was much worse than other existing methods in Blog-

Catalog, TRAPSDNE was turned to be the best because of the

remarkable performance gain obtained by both regularizers. The

improvement reached by up to 94.99% when the ratio of train-

ing data was 70%. Besides, we combined TRAP with the latest

embedding method called DANE, which aggregates additional

10
https://scikit-learn.org/stable

1622

TRAP: Two-level Regularized Autoencoder-based Embedding
for Power-law Distributed Data WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 6: Micro-f1 and macro-f1 of all algorithms on two
datasets (the best results are marked in bold).

Ratio of training data 10% 30% 50% 70% 90%

Cora

micro-f1

DANE 0.776 0.822 0.835 0.843 0.860

TRAPDANE 0.793 0.831 0.838 0.848 0.867

macro-f1

DANE 0.754 0.806 0.822 0.827 0.855

TRAPDANE 0.774 0.818 0.826 0.833 0.862

Cite

micro-f1

DANE 0.616 0.685 0.716 0.728 0.731
TRAPDANE 0.630 0.712 0.722 0.731 0.731

macro-f1

DANE 0.566 0.637 0.664 0.660 0.665

TRAPDANE 0.587 0.666 0.681 0.676 0.688

Table 7: PrecisionGR@k of six graph embedding algorithms
on three datasets (the best results are marked in bold).

PrecisionGR@ 10 100 500 1,000 10,000 100,000

Cora

DeepWalk 0.6 0.54 0.518 0.504 0.256 0.055

LINE 1 0.760 0.328 0.219 0.052 0.013

Node2Vec 0.7 0.5 0.45 0.31 0.066 0.026

Struc2Vec 0.6 0.36 0.182 0.123 0.047 0.012

SDNE 1 0.73 0.638 0.584 0.305 0.069

TRAPSDNE 1 1 0.858 0.814 0.453 0.099

Cite

DeepWalk 1 0.7 0.19 0.154 0.131 0.044

LINE 1 0.68 0.498 0.349 0.068 0.014

Node2Vec 0.8 0.76 0.438 0.248 0.047 0.020

Struc2Vec 0.6 0.29 0.14 0.109 0.037 0.012

SDNE 0.8 0.82 0.584 0.497 0.227 0.045

TRAPSDNE 1 0.9 0.736 0.672 0.318 0.074

Blog

DeepWalk 1 1 0.92 0.88 0.486 0.152

LINE 1 1 1 0.998 0.669 0.125

Node2Vec 1 0.98 0.984 0.910 0.435 0.145

Struc2Vec 0.7 0.5 0.272 0.217 0.126 0.098

SDNE 1 0.92 0.868 0.830 0.689 0.477

TRAPSDNE 1 1 0.98 0.948 0.826 0.545

attribute information to further improve the embedding perfor-

mance. Table 6 summarizes the micro-f1 and macro-f1 scores of
TRAPDANE and DANE on two datasets. Similarly, TRAPDANE
outperformed DANE by alleviating the polarization problem in

all cases.

• Graph Reconstruction: Table 7 shows precisionGR@k of all

algorithms on three datasets with varying k . In all datasets,

TRAPSDNE generally achieved the best performance. In par-

ticular, as k increased, its relative improvement compared with

SDNE gradually increased by up to 43.48% in Cora, 64.44% in

Citeseer, and 14.3% in BlogCatalog. That is, our two regularizers

allow us to capture more general structural information from

the original graph by handling the polarization problem.

6 CONCLUSION
In this paper, we proposed TRAP , a novel meta-approach to address

the polarization problem that exists in many real-world scenarios.

We showed that the sparsity of data objects severely affected the

embeddings and, therefore, suggested the two-level regularizers:

(i) the macroscopic regularizer restricts the overall effect of data

sparsity, and (ii) the microscopic regularizer finely tunes objects

to become closer to correlated objects in the latent embedding

space. TRAP can be easily combined with most autoencoder-based

approaches by adding the regularizer into the loss function and

changing the AE architecture. We validated the effectiveness of our

approach on two independent tasks using six datasets, and TRAP

always significantly improved the performance when applied to

existing embedding methods. Overall, we believe that our work

successfully tackled the polarization problem to greatly enhance

the learning capability of embedding methods.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (Ministry of

Science and ICT) (No. 2017R1E1A1A01075927).

REFERENCES
[1] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A Com-

prehensive Survey of Graph Embedding: Problems, Techniques, and Applications.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for

Learning Graph Representations. In Proceedings of the 13th AAAI Conference on
Artificial Intelligence. AAAI, 1145–1152.

[3] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law

Distributions in Empirical Data. SIAM Rev. 51, 4 (2009), 661–703.
[4] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
Vol. 18. IJCAI, 3364–3370.

[5] Hongchang Gao, Jian Pei, and Heng Huang. 2019. ProGAN: Network Embedding

via Proximity Generative Adversarial Network. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

1308–1316.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

Nets. In Proceedings of the 27th International Conference on Neural Information
Processing Systems. NeurIPS Foundation, 2672–2680.

[7] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for

Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[8] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning

on Graphs: Methods and Applications. ArXiv preprint arXiv:1709.05584 (2017).
[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web. IW3C2, 173–182.

[10] Diederik P Kingma and Max Welling. 2013. Auto-encoding Variational Bayes.

ArXiv preprint arXiv:1312.6114 (2013).
[11] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted Col-

laborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 426–434.

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-

niques for Recommender Systems. Computer 8 (2009), 30–37.
[13] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational Autoencoders for Collaborative Filtering. In Proceedings of the Web
Conference 2018. IW3C2, 689–698.

[14] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using

t-SNE. Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality. In

Proceedings of the 26th International Conference on Neural Information Processing
Systems. NeurIPS Foundation, 3111–3119.

[16] AndriyMnih and Ruslan R Salakhutdinov. 2008. ProbabilisticMatrix Factorization.

In Proceedings of the 20th International Conference on Neural Information Processing
Systems. NeurIPS Foundation, 1257–1264.

[17] Katarzyna Musiał and Przemysław Kazienko. 2013. Social Networks on the

Internet. World Wide Web 16, 1 (2013), 31–72.
[18] Vera Pawlowsky-Glahn, Juan José Egozcue, and Raimon Tolosana Delgado. 2015.

Modeling and Analysis of Compositional Data (1 ed.). Wiley.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-

ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 701–710.

[20] Leonardo FR Ribeiro, PedroHP Saverese, andDaniel R Figueiredo. 2017. Struc2vec:

Learning Node Representations from Structural Identity. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 385–394.

1623

WWW ’20, April 20–24, 2020, Taipei, Taiwan Dongmin Park, Hwanjun Song, Minseok Kim, Jae-Gil Lee

[21] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.

Autorec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web. IW3C2, 111–112.

[22] Hwanjun Song, Jae-Gil Lee, and Wook-Shin Han. 2017. PAMAE: Parallel k-

medoids Clustering with High Accuracy and Efficiency. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1087–1096.

[23] Petre Stoica and Niclas Sandgren. 2006. Total-variance Reduction via Threshold-

ing: Application to Cepstral Analysis. IEEE Transactions on Signal Processing 55,

1 (2006), 66–72.

[24] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web. IW3C2, 1067–1077.

[25] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

2008. Extracting and Composing Robust Features with Denoising Autoencoders.

In Proceedings of the 25th International Conference on Machine Learning. ICML,

1096–1103.

[26] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-

bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1225–1234.

[27] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-

tive Denoising Auto-encoders for Top-n Recommender Systems. In Proceedings
of the 9th ACM International Conference on Web Search and Data Mining. ACM,

153–162.

[28] Jia-Dong Zhang and Chi-Yin Chow. 2015. Geosoca: Exploiting Geographical,

Social and Categorical Correlations for Point-of-interest Recommendations. In

Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 443–452.

[29] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based

Recommender System: A Survey and New Perspectives. Comput. Surveys 52, 1
(2019), 5.

[30] Ziwei Zhu, Jianling Wang, and James Caverlee. 2019. Improving Top-K Rec-

ommendation via Joint Collaborative Autoencoders. In Proceedings of the Web
Conference 2019. IW3C2, 3483–3489.

1624

	Abstract
	1 Introduction
	2 Related Work
	2.1 User-Item Embedding
	2.2 Node Embedding

	3 Polarization Problem
	3.1 Preliminary
	3.2 Theoretical Analysis on Polarization

	4 Two Regularizers of TRAP
	4.1 Macroscopic Regularizer
	4.2 Microscopic Regularizer
	4.3 Quick Analysis on TRAP

	5 Experiments
	5.1 User-Item Embedding
	5.2 Node Embedding

	6 Conclusion
	Acknowledgments
	References

